

DLP472TP

ZHCSS93 - AUGUST 2024

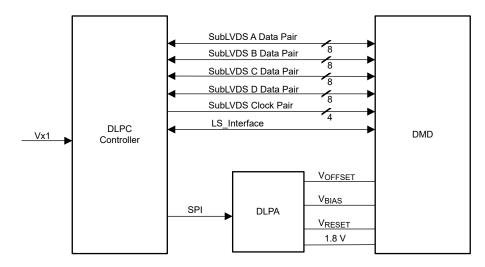
DLP472TP 0.47 英寸 4K 超高清数字微镜器件

1 特性

- 0.47 英寸对角线微镜阵列
 - 4K UHD (3840 × 2160) 显示分辨率
 - 5.4µm 微镜间距
 - ±17° 微镜倾斜度(相对于平坦表面)
 - 底部照明
- SubLVDS 输入数据总线
- 支持 4K UHD (60Hz)
- 支持 1080p (高达 240Hz)
- 由 DLPC8445 显示控制器、DLPA3085 电源管理 IC (PMIC) 和 LED 驱动器支持 LED 正常运行

2 应用

- 移动智能电视
- 移动投影仪
- 数字标牌


3 说明

DLP472TP 数字微镜器件 (DMD) 是一款数控微机电系 统 (MEMS) 空间光调制器 (SLM),可用于实现高亮的 4K UHD 显示系统。TI DLP® 产品 0.47 英寸 4K UHD 芯片组包括 DLP472TP DMD、DLPC8445 显示控制 器、DLPA3085 PMIC 和 LED 驱动器。芯片组的外形 紧凑,为体型小巧的 4K 超高清显示器提供完整的系统 解决方案。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸
DLP472TP	FQY (166)	24.50mm × 11.00mm

(1) 有关更多信息,请参阅节 12。

简化版应用

English Data Sheet: DLPS247

Table of Contents

1	特性	1
2	应用	1
3	说明	1
	Pin Configuration and Functions	
	4.1 Pin Functions	
5	Specifications	<mark>7</mark>
	5.1 Absolute Maximum Ratings	<mark>7</mark>
	5.2 Storage Conditions	8
	5.3 ESD Ratings	
	5.4 Recommended Operating Conditions	9
	5.5 Thermal Information	10
	5.6 Electrical Characteristics	11
	5.7 Switching Characteristics	12
	5.8 Timing Requirements	12
	5.9 System Mounting Interface Loads	17
	5.10 Micromirror Array Physical Characteristics	17
	5.11 Micromirror Array Optical Characteristics	
	5.12 Window Characteristics	
	5.13 Chipset Component Usage Specification	
6	Detailed Description	
	6.1 Overview	
	6.2 Functional Block Diagram	
	6.3 Feature Description	
	6.4 Device Functional Modes	<mark>22</mark>
	6.5 Optical Interface and System Image Quality	
	Considerations	22

12 机械、封装和可订购信息	37
11 Revision History	
10.7 术语表	
10.6 静电放电警告	36
10.5 商标	36
10.4 接收文档更新通知	
10.3 文档支持	
10.2 器件支持	
10.1 第三方产品免责声明	
10 器件和文档支持	
9.2 Layout Example	
9.1 Layout Guidelines	
9 Layout	
8.2 DMD Power Supply Power-Down Procedure	31
8.1 DMD Power Supply Power-Up Procedure	
8 Power Supply Recommendations	31
7.3 Temperature Sensor Diode	
7.2 Typical Application	
7.1 Application Information	
7 Application and Implementation	
6.8 Micromirror Landed-On/Landed-Off Duty Cycle	
6.7 Micromirror Power Density Calculation	
6.6 Micromirror Array Temperature Calculation	23

4 Pin Configuration and Functions

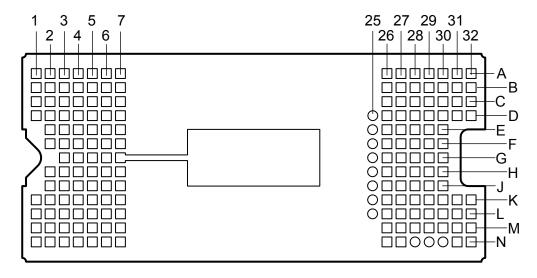


图 4-1. FQY Package 166-Pin LGA (Bottom View)

小心

The layout and operation of signals identified in the Pin Functions table must be properly managed to make sure there is reliable operation of the 0.47" 4K UHD S321 DMD. Refer to the Layout Guidelines for the DMD and Controller before designing the board.

4.1 Pin Functions

PIN ⁽²⁾		(4)			TRACE
NAME	PAD ID	TYPE ⁽¹⁾	DESCRIPTION	TERMINATION	LENGTH (mm)
D_AP(0)	A2	I	High-speed Differential Data Pair lane A0	Differential 100 Ω	3.75497
D_AN(0)	B2	I	High-speed Differential Data Pair lane A0	Differential 100 Ω	3.75482
D_AP(1)	A6	I	High-speed Differential Data Pair lane A1	Differential 100 Ω	4.62509
D_AN(1)	B6	I	High-speed Differential Data Pair lane A1	Differential 100 Ω	4.625
D_AP(2)	C1	I	High-speed Differential Data Pair lane A2	Differential 100 Ω	3.59503
D_AN(2)	C2	I	High-speed Differential Data Pair lane A2	Differential 100 Ω	3.59513
D_AP(3)	C6	I	High-speed Differential Data Pair lane A3	Differential 100 Ω	5.12758
D_AN(3)	C7	I	High-speed Differential Data Pair lane A3	Differential 100 Ω	5.12745
D_AP(4)	G3	I	High-speed Differential Data Pair lane A4	Differential 100 Ω	1.60057
D_AN(4)	G4	I	High-speed Differential Data Pair lane A4	Differential 100 Ω	1.6004
D_AP(5)	F7	I	High-speed Differential Data Pair lane A5	Differential 100 Ω	3.64067
D_AN(5)	F6	I	High-speed Differential Data Pair lane A5	Differential 100 Ω	3.64091
D_AP(6)	F4	I	High-speed Differential Data Pair lane A6	Differential 100 Ω	1.58206
D_AN(6)	F5	I	High-speed Differential Data Pair lane A6	Differential 100 Ω	1.58187
D_AP(7)	H6	I	High-speed Differential Data Pair lane A7	Differential 100 Ω	2.70067
D_AN(7)	G6	I	High-speed Differential Data Pair lane A7	Differential 100 Ω	2.70086
DCLK_AP	E5	I	High-speed Differential Clock A	Differential 100 Ω	2.96493
DCLK_AN	D5	I	High-speed Differential Clock A	Differential 100 Ω	2.9653

Product Folder Links: DLP472TP

PIN ⁽²⁾		(1)			TRACE
NAME	PAD ID	TYPE ⁽¹⁾	DESCRIPTION	TERMINATION	LENGTH (mm)
D_BP(0)	B30	I	High-speed Differential Data Pair lane B0	Differential 100 Ω	3.57087
D_BN(0)	A30	I	High-speed Differential Data Pair lane B0	Differential 100 Ω	3.57064
D_BP(1)	C32	I	High-speed Differential Data Pair lane B1	Differential 100 Ω	4.2546
D_BN(1)	B32	I	High-speed Differential Data Pair lane B1	Differential 100 Ω	4.25425
D_BP(2)	A28	I	High-speed Differential Data Pair lane B2	Differential 100 Ω	4.97968
D_BN(2)	B28	I	High-speed Differential Data Pair lane B2	Differential 100 Ω	4.97953
D_BP(3)	C31	I	High-speed Differential Data Pair lane B3	Differential 100 Ω	3.12736
D_BN(3)	C30	I	High-speed Differential Data Pair lane B3	Differential 100 Ω	3.12743
D_BP(4)	C27	I	High-speed Differential Data Pair lane B4	Differential 100 Ω	5.44353
D_BN(4)	B27	I	High-speed Differential Data Pair lane B4	Differential 100 Ω	5.4433
D_BP(5)	D28	I	High-speed Differential Data Pair lane B5	Differential 100 Ω	3.32124
D_BN(5)	D27	I	High-speed Differential Data Pair lane B5	Differential 100 Ω	3.32115
D_BP(6)	F30	I	High-speed Differential Data Pair lane B6	Differential 100 Ω	2.99334
D_BN(6)	E30	I	High-speed Differential Data Pair lane B6	Differential 100 Ω	2.99374
D_BP(7)	G27	I	High-speed Differential Data Pair lane B7	Differential 100 Ω	3.14865
D_BN(7)	G28	I	High-speed Differential Data Pair lane B7	Differential 100 Ω	3.14902
DCLK_BP	D29	I	High-speed Differential Clock B	Differential 100 Ω	5.03976
DCLK_BN	D30	I	High-speed Differential Clock B	Differential 100 Ω	5.0395
D_CP(0)	J4	I	High-speed Differential Data Pair lane C0	Differential 100 Ω	2.06577
D_CN(0)	H4	I	High-speed Differential Data Pair lane C0	Differential 100 Ω	2.06568
D_CP(1)	J7	I	High-speed Differential Data Pair lane C1	Differential 100 Ω	4.87119
D_CN(1)	J6	I	High-speed Differential Data Pair lane C1	Differential 100 Ω	4.87131
D_CP(2)	K5	I	High-speed Differential Data Pair lane C2	Differential 100 Ω	4.69951
D_CN(2)	J5	I	High-speed Differential Data Pair lane C2	Differential 100 Ω	4.69926
D_CP(3)	L4	I	High-speed Differential Data Pair lane C3	Differential 100 Ω	3.27735
D_CN(3)	L5	I	High-speed Differential Data Pair lane C3	Differential 100 Ω	3.27722
D_CP(4)	L2	I	High-speed Differential Data Pair lane C4	Differential 100 Ω	4.65167
D_CN(4)	M2	I	High-speed Differential Data Pair lane C4	Differential 100 Ω	4.6513
D_CP(5)	M3	I	High-speed Differential Data Pair lane C5	Differential 100 Ω	5.70359
D_CN(5)	N3	I	High-speed Differential Data Pair lane C5	Differential 100 Ω	5.70352
D_CP(6)	M5	I	High-speed Differential Data Pair lane C6	Differential 100 Ω	2.57704
D_CN(6)	M6	I	High-speed Differential Data Pair lane C6	Differential 100 Ω	2.57727
D_CP(7)	N7	I	High-speed Differential Data Pair lane C7	Differential 100 Ω	3.77278
D_CN(7)	M7	I	High-speed Differential Data Pair lane C7	Differential 100 Ω	3.77317
DCLK_CP	K2	I	High-speed Differential Clock C	Differential 100 Ω	2.3747
DCLK_CN	J2	I	High-speed Differential Clock C	Differential 100 Ω	2.37429
D_DP(0)	G29	I	High-speed Differential Data Pair lane D0	Differential 100 Ω	3.67925
D_DN(0)	F29	I	High-speed Differential Data Pair lane D0	Differential 100 Ω	3.6794
D_DP(1)	F27	I	High-speed Differential Data Pair lane D1	Differential 100 Ω	4.73751
D_DN(1)	E27	I	High-speed Differential Data Pair lane D1	Differential 100 Ω	4.73796
D_DP(2)	K30	I	High-speed Differential Data Pair lane D2	Differential 100 Ω	2.76933
D_DN(2)	K29	I	High-speed Differential Data Pair lane D2	Differential 100 Ω	2.76936

Product Folder Links: DLP472TP

PIN⁽²⁾ **TRACE** TYPE(1) **DESCRIPTION TERMINATION LENGTH** NAME **PAD ID** (mm) D DP(3) J27 High-speed Differential Data Pair lane D3 Differential 100 Ω 3.07794 D DN(3) K27 ı High-speed Differential Data Pair lane D3 Differential 100 Ω 3.07804 D DP(4) M30 ı High-speed Differential Data Pair lane D4 Differential 100 Ω 3.60026 D DN(4) L30 High-speed Differential Data Pair Iane D4 3.60028 Differential 100 Ω D_DP(5) M27 High-speed Differential Data Pair lane D5 Differential 100 Ω 3.24012 D_DN(5) L27 High-speed Differential Data Pair lane D5 Differential 100 Ω 3.24002 D DP(6) ı N26 High-speed Differential Data Pair lane D6 Differential 100 Ω 4.69564 M26 ī High-speed Differential Data Pair lane D6 D_DN(6) 4.69594 Differential 100 Ω D DP(7) M31 High-speed Differential Data Pair lane D7 3.97347 Differential 100 Ω M32 High-speed Differential Data Pair Iane D7 D DN(7) 3.97352 Differential 100 Ω DCLK DP H29 High-speed Differential Clock D 1.7593 Differential 100 Ω DCLK DN J29 High-speed Differential Clock D Differential 100 Ω 1.75933 LS WDATA D4 LVDS Data 2.29224 LS_CLK C4 LVDS CLK 1.73951 0 LS RDATA A C5 LVCMOS Output 2.72344 LS RDATA B D3 0 LVCMOS Output 2.22814 LS_RDATA_C F3 0 LVCMOS Output 3.22863 0 LS RDATA D F3 LVCMOS Output 4.90151 **ARSTZ** DMD DEN ARSTZ D2 ı 1.80911 TEMP N N1 Temp Diode N 1.84006 TEMP P M1 Temp Diode P 2.62822 A3, A4, C26, D1, D6, D7, D26, E2, E6, E7, E26, F2, VDD G30, H28, Р Digital Core Supply Voltage 14.26561 H30, J26, J30, K1, K6, K26, K31, K32, L1, L31, L32, N2 A5, B5, F26. G26. VDDI Ρ SubLVDS supply voltage 3.72532 H26, H27, K7, L7 Supply voltage for negative bias of Ρ **VRESET** B3, B26 25.57603 micromirror reset signal Supply voltage for positive bias of **VBIAS** Р A27, B4 24.70004 micromirror reset signal A26, C3, Supply voltage for HVCMOS logic, stepped Р VOFFSET 8.73417 L6, L26 up logic level

PIN ⁽²⁾		= (1)	TVDF(1)		TRACE
NAME	PAD ID	TYPE ⁽¹⁾	DESCRIPTION	TERMINATION	LENGTH (mm)
VSS	A1, A7, A29, A31, A32, B1, B7, B29, B31, C28, C29, D31, D32, E4, E28, E29, F28, G5, G7, H2, H3, H5, H7, J3, J28, K3, K4, K28, L3, L28, L29, M4, M28, M29, N4, N5, N6, N27, N31, N32	G	Ground		24.6246
N/C	N28, N29, N30, L25, K25, J25, H25, G25, F25, E25, D25	NC	No Connect Pin		None

⁽¹⁾ I=Input, O=Output, P=Power, G=Ground, NC=No Connect

⁽²⁾ Only 163 pins are electrically connected for functional use

5 Specifications

5.1 Absolute Maximum Ratings

Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

	and they direct device reliability, furiodoriality, performance, and shorter a	MIN	MAX	UNIT
SUPPLY VOLTAGE				
V_{DD}	Supply voltage for LVCMOS core logic and LPSDR low speed interface (1)	-0.5	2.3	V
V _{DDI}	Supply voltage for SubLVDS receivers ⁽¹⁾	-0.5	2.3	V
V _{OFFSET}	Supply voltage for HVCMOS and micromirror electrode ^{(1) (2)}	-0.5	11	V
V _{BIAS}	Supply voltage for micromirror electrode ⁽¹⁾	-0.5	19	V
V _{RESET}	Supply voltage for micromirror electrode ⁽¹⁾	-15	0.5	V
V _{DDI} - V _{DD}	Supply voltage delta, absolute value ⁽³⁾		0.3	V
V _{BIAS} - V _{OFFSET}	Supply voltage delta, absolute value ⁽⁴⁾		11	V
V _{BIAS} - V _{RESET}	Supply voltage delta, absolute value ⁽⁵⁾		34	V
INPUT VOLTAGE			'	
	Input voltage for other inputs LSIF and LVCMOS ⁽¹⁾	-0.5	V _{DD} + 0.5	V
	Input voltage for other inputs SubLVDS ⁽¹⁾ (6)	-0.5	V _{DDI} + 0.5	V
SUBLVDS INTERFACE			·	
V _{ID}	SubLVDS input differential voltage (absolute value) ^{(1) (6)}		810	mV
I _{ID}	SubLVDS input differential current		10	mA
CLOCK FREQUENCY			-	
f_{clock}	Clock frequency for low speed interface LS_CLK	100	130	MHz
TEMPERATURE DIODE		-		
I _{TEMP_DIODE}	Max current source into temperature diode		120	μA
ENVIRONMENTAL			·	
	Temperature, operating ⁽⁷⁾	0	90	°C
T_{WINDOW} and T_{ARRAY}	Temperature, non-operating ⁽⁷⁾	-40	90	°C
T _{DELTA}	Absolute temperature delta between any point on the window edge and theceramic test point TP1 ⁽⁸⁾		30	°C
T _{DP}	Dew point temperature, operating and non - operating (noncondensing)		81	°C

- (1) All voltage values are with respect to the ground terminals (V_{SS}). The following required power supplies must be connected for proper DMD operation: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are also required.
- (2) V_{OFFSET} supply transients must fall within specified voltages.
- (3) Exceeding the recommended allowable absolute voltage difference between V_{DDI} and V_{DD} may result in excessive current draw and permanent damage to the device.
- (4) Exceeding the recommended allowable absolute voltage difference between V_{BIAS} and V_{OFFSET} may result in excessive current draw and permanent damage to the device.
- (5) Exceeding the recommended allowable absolute voltage difference between V_{BIAS} and V_{RESET} may result in excessive current draw and permanent damage to the device.
- (6) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.
- (7) The highest temperature of the active array (as calculated using the Micromirror Array Temperature Calculation) or of any point along the window edge. The locations of thermal test points TP2, TP3, TP4, and TP5 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point should be used.
- (8) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge. The window test points TP2, TP3, TP4, and TP5 are intended to result in the worst case delta. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.

Product Folder Links: DLP472TP

Copyright © 2024 Texas Instruments Incorporated

5.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system.

		MIN	MAX	UNIT
T _{DMD}	DMD temperature	-40	85	°C
T _{DP-AVG}	Average dew point temperature, non-condensing ⁽¹⁾		24	°C
T _{DP-ELR}	Elevated dew point temperature range, non-condensing ⁽²⁾	28	36	°C
CT _{ELR}	Cumulative time in elevated dew pointt temperature range		6	months

- (1) The average temperature over time (including storage and operating temperatures) that the device is not in the elevated dew point temperature range.
- (2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}.

5.3 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V
V _(ESD)	(ESD) Discharge	Charged device model (CDM), per JEDEC specification ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±250	V

Product Folder Links: DLP472TP

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

5.4 Recommended Operating Conditions

Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits.

MIN SUPPLY VOLTAGE RANGE VDD Supply voltage for LYCMOS core logic(1) (2) 1.71 VDD Supply voltage for LPSDR low-speed interface(1) (2) 1.71 VDDI Supply voltage for SubLVDS receivers(1) (2) 1.71 VOFFSET Supply voltage for HYCMOS and micromiror electrode(1) (2) 9.5 VBIAS Supply voltage for micromiror electrode(1) (2) 17.5 VRESET Supply voltage delta (absolute value)(1) (2) (4) 17.5 IVDI-VDDI Supply voltage delta (absolute value)(1) (2) (6) 18.5 IVBIAS-VOFFSETI Supply voltage delta (absolute value)(1) (2) (6) 18.5 IVBIAS-VOFESETI Supply voltage delta (absolute value)(1) (2) (6) 10.6 CLOCK FREQUENCY Clock frequency for low speed interface LS_CLK(7) 10.8 CLOCK FREQUENCY Clock frequency for high-speed interface DCLK (8) 10.8 DCD _{IN} Duty cycle distortion 44 SUBLVDS INTERFACE No. 15.0 V _{CM} Common mode voltage(8) 70.0 V _{SUBLVDS} SubLVDS voltage(8) 52.5 Z _{LINE}	YP MAX	UNIT
VDD Supply voltage for LVCMOS core logic(¹) (²) Supply voltage for LPSDR low-speed interface(¹) (²) 1.71 VDDI Supply voltage for SubLVDS receivers(¹) (²) 1.71 VOFFSET Supply voltage for MVCMOS and micromirror electrode(¹) (²) 9.5 VBIAS Supply voltage for mirror electrode(¹) (²) 17.5 VRESET Supply voltage for micromirror electrode(¹) (²) − 14.5 I/DDI-VDD Supply voltage delta (absolute value)(¹) (²) (²) − 14.5 I/VBIAS-VOFFSET Supply voltage delta (absolute value)(¹) (²) (²) − 14.5 I/VBIAS-VRESET Supply voltage delta (absolute value)(¹) (²) (²) − 14.5 CLOCK FREQUENCY Supply voltage delta (absolute value)(¹) (²) (²) − 14.5 CLOCK FREQUENCY Clock frequency for low speed interface LS_CLK(²) 108 DCD _{IN} Duty cycle distortion 44 SUBLVDS INTERFACE Volume (Poly differential input voltage magnitude(³) 150 V _{CM} Common mode voltage(³) 700 V _{SUBLVDS} SubLVDS voltage(³) 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential		
VDD Supply voltage for LPSDR low-speed interface(1) (2) 1.71		
$VOFFSET & Supply voltage for HVCMOS and micromirror electrode(1)(2)(3) & 9.5 \\ VBIAS & Supply voltage for mirror electrode(1)(2) & 17.5 \\ VRESET & Supply voltage for micromirror electrode(1)(2) & -14.5 \\ VDDI- VDD & Supply voltage delta (absolute value)(1)(2)(4) & VBIAS-VOFFSET & Supply voltage delta (absolute value)(1)(2)(5) & VBIAS-VOFFSET & Supply voltage delta (absolute value)(1)(2)(6) & $	1.8 1.95	V
VBIAS Supply voltage for mirror electrode(¹) (²) 17.5 VRESET Supply voltage for micromirror electrode(¹) (²) −14.5 VRESET Supply voltage for micromirror electrode(¹) (²) −14.5 IVDDI- VDD Supply voltage delta (absolute value)(¹) (²) (⁴) IVBIAS-VOFFSET Supply voltage delta (absolute value)(¹) (²) (⁵) IVBIAS- VRESET Supply voltage delta (absolute value)(¹) (²) (°) CLOCK FREQUENCY Clock frequency for low speed interface LS_CLK(¹) 108 Clock frequency for high-speed interface DCLK (°) DCD _{IN} Duty cycle distortion 44 SUBLVDS INTERFACE IV _{ID} LVDS differential input voltage magnitude(°) 150 V _{CM} Common mode voltage(°) 700 V _{SUBLVDS} SubLVDS voltage(°) 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential termination resistance(¹¹) 80 ENVIRONMENTAL T _{ARRAY} Array temperature, long-term operation(°) (¹0) (¹1) (¹2) 10 Array temperature, short-term operation, 500 hr max(¹0) (¹3) 0 T _{Window} Window temperature, operational(¹4) IT _{DELTA} Absolute Temperature difference between any point on the window edge and the ceramic test point TP1(¹6) T _{DP-AVG} Average dew point temperature range, (non-condensing)(¹6) CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILLUMINATION	1.8 1.95	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 10.5	V
$ \text{VDDI-VDD} \text{Supply voltage delta (absolute value)}^{(1)} (2) (4) \\ \text{VBIAS-VOFFSET} \text{Supply voltage delta (absolute value)}^{(1)} (2) (5) \\ \text{VBIAS-VRESET} \text{Supply voltage delta (absolute value)}^{(1)} (2) (6) \\ \text{VBIAS-VRESET} \text{Supply voltage delta (absolute value)}^{(1)} (2) (6) \\ \text{CLOCK FREQUENCY} \text{Clock frequency for low speed interface LS_CLK}^{(7)} 108 \\ \text{Clock frequency for high-speed interface DCLK}^{(8)} \text{DCD}_{IN} \text{Duty cycle distortion} 44 \\ \text{SUBLVDS INTERFACE} \text{IVDS differential input voltage magnitude}^{(8)} 150 \\ \text{V}_{CM} \text{Common mode voltage}^{(8)} 700 \\ \text{V}_{SUBLVDS} \text{SubLVDS voltage}^{(8)} 525 \\ \text{ZLINE} \text{Line differential impedance} (PWB/trace) 90 \\ \text{ZIN} \text{Internal differential termination resistance}^{(10)} 80 \\ 100 \Omega \text{ differential PCB trace} 6.35 \\ \text{ENVIRONMENTAL} \text{Array temperature, long-term operation}^{(9)} ^{(10)} ^{(11)} ^{(12)} 10 \\ \text{Array temperature, short-term operation}^{(9)} ^{(10)} ^{(11)} ^{(12)} 10 \\ \text{Array temperature difference between any point on the window edge and the ceramic test point TP1^{(16)} 10 \\ \text{T}_{DELTA} \text{Absolute Temperature difference between any point on the window edge and the ceramic test point TP1^{(16)} 10 \\ \text{T}_{DP-AVG} \text{Average dew point temperature, (non-condensing)}^{(15)} 10 \\ \text{T}_{DP-ELR} \text{Elevated dew point temperature range, (non-condensing)}^{(16)} 10 \\ \text{LLUMINATION} \text{Illumination, wavelength}^{(10)} < 410 \text{nm}^{(9)} 10 \\ \text{LLUMINATION} \text{Illumination, wavelength}^{(10)} < 410 \text{nm}^{(9)} 10 \\ \text{LVDS}^{(10)} \text{LVDS}^{(10$	18 18.5	V
$ VBIAS-VOFFSET Supply voltage delta (absolute value)^{(1)} (2) (5) \\ VBIAS- VRESET Supply voltage delta (absolute value)^{(1)} (2) (6) \\ VBIAS- VRESET Supply voltage delta (absolute value)^{(1)} (2) (6) \\ CLOCK FREQUENCY \\ f_{clock} & Clock frequency for low speed interface LS_CLK^{(7)} 108 \\ Clock frequency for high-speed interface DCLK^{(8)} \\ DCD_{IN} & Duty cycle distortion 44 \\ SUBLVDS INTERFACE \\ V_{ID} & LVDS differential input voltage magnitude^{(8)} 150 \\ V_{CM} & Common mode voltage^{(8)} 700 \\ V_{SUBLVDS} & SubLVDS voltage^{(8)} 525 \\ Z_{LINE} & Line differential impedance (PWB/trace) 90 \\ Z_{IN} & Internal differential termination resistance^{(10)} 80 \\ 100 \Omega & differential PCB trace 6.35 \\ ENVIRONMENTAL \\ T_{ARRAY} & Array temperature, long-term operation^{(9)} (10) (11) (12) 10 \\ Array temperature, short-term operation, 500 hr max^{(10)} (13) 0 \\ T_{Window} & Window temperature difference between any point on the window edge and the ceramic test point TP1^{(16)} \\ T_{DE-LTA} & Absolute Temperature difference between any point on the window edge and the ceramic test point TP1^{(16)} \\ T_{DP-ELR} & Elevated dew point temperature range, (non-condensing)^{(15)} \\ CT_{ELR} & Cumulative time in elevated dew point temperature range ILLUMINATION Illumination, wavelength < 410nm^{(9)} Illumination, wavelength < Illumination, wavelength < Illumination, wavelength < 10 minus of the part of the product of the part of the part of the$	14 - 13.5	V
VBIAS- VRESET Supply voltage delta (absolute value) (1) (2) (6)	0.3	V
CLOCK FREQUENCY f_{clock} Clock frequency for low speed interface LS_CLK(7) 108 f_{clock} Clock frequency for high-speed interface DCLK (8) DCD _{IN} Duty cycle distortion 44 SUBLVDS INTERFACE IV _{ID} LVDS differential input voltage magnitude(8) 150 V _{CM} Common mode voltage(8) 700 V _{SUBLVDS} SubLVDS voltage(8) 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential termination resistance(10) 80 ENVIRONMENTAL T_Array temperature, long-term operation(9) (10) (11) (12) 10 Array temperature, short-term operation, 500 hr max(10) (13) 0 T_Window Window temperature, operational(14) IT_DELTAI Absolute Temperature difference between any point on the window edge and the ceramic test point TP1(16) T_DP-AVG Average dew point temperature, (non-condensing)(15) T_DP-ELR Elevated dew point temperature range, (non-condensing)(16) CT_ELR Cumulative time in elevated dew point temperature range ILLUMINATION	10.5	V
$f_{clock} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	33	V
F clock Clock frequency for high-speed interface DCLK (8) DCD _{IN} Duty cycle distortion 44 SUBLVDS INTERFACE [V _{ID}] LVDS differential input voltage magnitude(8) 150 V _{CM} Common mode voltage(8) 700 V _{SUBLVDS} SubLVDS voltage(8) 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential termination resistance(10) 80 100 Ω differential PCB trace 6.35 ENVIRONMENTAL T _{ARRAY} Array temperature, long-term operation(9) (10) (11) (12) 10 Array temperature, short-term operation, 500 hr max(10) (13) 0 T _{Window} Window temperature, operational(14) T _{DELTA} Absolute Temperature difference between any point on the window edge and the ceramic test point TP1(16) T _{DP-AVG} Average dew point temperature, (non-condensing)(15) T _{DP-ELR} Elevated dew point temperature range, (non-condensing)(16) CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILLUMINATION		
Clock frequency for high-speed interface DCLR (9) Dty cycle distortion 44	120	MHz
SUBLVDS INTERFACE IV _{ID} LVDS differential input voltage magnitude ⁽⁸⁾ 150 V _{CM} Common mode voltage ⁽⁸⁾ 700 V _{SUBLVDS} SubLVDS voltage ⁽⁸⁾ 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential termination resistance ⁽¹⁰⁾ 80 100 Ω differential PCB trace 6.35 ENVIRONMENTAL TARRAY Array temperature, long-term operation ⁽⁹⁾ (10) (11) (12) 10 Array temperature, short-term operation, 500 hr max ⁽¹⁰⁾ (13) 0 T _{Window} Window temperature, operational ⁽¹⁴⁾ IT _{DELTA} I Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ T _{DP-AVG} Average dew point temperature, (non-condensing) ⁽¹⁵⁾ T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILLUMINATION ILLUMINATION	720	MHz
$ V_{ID} \qquad LVDS \ differential input voltage magnitude (8) \qquad 150 $ $ V_{CM} \qquad Common mode \ voltage (8) \qquad 700 $ $ V_{SUBLVDS} \qquad SubLVDS \ voltage (8) \qquad 525 $ $ Z_{LINE} \qquad Line \ differential \ impedance \ (PWB/trace) \qquad 90 $ $ Z_{IN} \qquad Internal \ differential \ termination \ resistance (10) \qquad 80 $ $ 100 \ \Omega $	56	%
V _{CM} Common mode voltage ⁽⁸⁾ 700 V _{SUBLVDS} SubLVDS voltage ⁽⁸⁾ 525 Z _{LINE} Line differential impedance (PWB/trace) 90 Z _{IN} Internal differential termination resistance ⁽¹⁰⁾ 80 100 Ω differential PCB trace 6.35 ENVIRONMENTAL Array temperature, long-term operation ⁽⁹⁾ (10) (11) (12) 10 Array temperature, short-term operation, 500 hr max ⁽¹⁰⁾ (13) 0 T _{Window} Window temperature, operational ⁽¹⁴⁾ IT _{DELTA} I Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ T _{DP-AVG} Average dew point temperature, (non-condensing) ⁽¹⁵⁾ T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION Illumination, wavelength < 410nm ⁽⁹⁾		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	250 350	mV
$ Z_{\text{LINE}} \qquad \text{Line differential impedance (PWB/trace)} \qquad 90 $	900 1100	mV
$ Z_{\text{IN}} \qquad \text{Internal differential termination resistance}^{(10)} \qquad 80 \\ 100 \Omega \text{ differential PCB trace} \qquad 6.35 \\ \hline \textbf{ENVIRONMENTAL} \\ T_{\text{ARRAY}} \qquad \frac{\text{Array temperature, long-term operation}^{(9)} (10) (11) (12)}{\text{Array temperature, short-term operation, 500 hr max}^{(10)} (13)} \qquad 0 \\ T_{\text{Window}} \qquad \text{Window temperature, operational}^{(14)} \\ T_{\text{DELTA}} \qquad \text{Absolute Temperature difference between any point on the window edge and the ceramic test point TP1}^{(16)} \\ T_{\text{DP-AVG}} \qquad \text{Average dew point temperature, (non-condensing)}^{(15)} \\ T_{\text{DP-ELR}} \qquad \text{Elevated dew point temperature range, (non-condensing)}^{(16)} \\ CT_{\text{ELR}} \qquad \text{Cumulative time in elevated dew point temperature range} \\ \hline{\textbf{ILLUMINATION}} \\ \text{Illumination, wavelength} < 410 \text{nm}^{(9)} \\ \hline \end{tabular} $	1275	mV
	100 110	Ω
ENVIRONMENTAL TARRAY Array temperature, long-term operation(9) (10) (11) (12) 10 Array temperature, short-term operation, 500 hr max(10) (13) 0 TWINDOW Window temperature, operational(14) ITDELTAI Absolute Temperature difference between any point on the window edge and the ceramic test point TP1(16) TDP-AVG Average dew point temperature, (non-condensing)(15) TDP-ELR Elevated dew point temperature range, (non-condensing)(16) CTELR Cumulative time in elevated dew point temperature range ILLUMINATION IILUMINATION IIIUmination, wavelength < 410nm(9)	100 120	Ω
Array temperature, long-term operation ⁽⁹⁾ (10) (11) (12) Array temperature, short-term operation, 500 hr max ⁽¹⁰⁾ (13) T _{Window} Window temperature, operational ⁽¹⁴⁾ Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ T _{DP-AVG} Average dew point temperature, (non-condensing) ⁽¹⁵⁾ T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION Illumination, wavelength < 410nm ⁽⁹⁾	152.4	mm
Array temperature, short-term operation, 500 hr max ⁽¹⁰⁾ (13) 0 Twindow Window temperature, operational ⁽¹⁴⁾ Toelta Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ Toelta Average dew point temperature, (non-condensing) ⁽¹⁵⁾ Toelta Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CTelta Cumulative time in elevated dew point temperature range Illumination, wavelength < 410nm ⁽⁹⁾		
T _{Window} Window temperature, operational ⁽¹⁴⁾ Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ T _{DP-AVG} Average dew point temperature, (non-condensing) ⁽¹⁵⁾ T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILLUMINATION Illumination, wavelength < 410nm ⁽⁹⁾	40 to 70	°C
Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ T _{DP-AVG} Average dew point temperature, (non-condensing) ⁽¹⁵⁾ T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILL _{UV} Illumination, wavelength < 410nm ⁽⁹⁾	10	°C
I*DELTAI window edge and the ceramic test point TP1(16) TDP-AVG Average dew point temperature, (non-condensing)(15) TDP-ELR Elevated dew point temperature range, (non-condensing)(16) CTELR Cumulative time in elevated dew point temperature range ILLUMINATION ILLUV Illumination, wavelength < 410nm(9)	85	°C
T _{DP-ELR} Elevated dew point temperature range, (non-condensing) ⁽¹⁶⁾ CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILL _{UV} Illumination, wavelength < 410nm ⁽⁹⁾	15	°C
CT _{ELR} Cumulative time in elevated dew point temperature range ILLUMINATION ILL _{UV} Illumination, wavelength < 410nm ⁽⁹⁾	24	°C
ILLUMINATION ILL _{UV} Illumination, wavelength < 410nm ⁽⁹⁾	28 36	°C
ILL _{UV} Illumination, wavelength < 410nm ⁽⁹⁾	6	Months
	10	mW/cm ²
ILL _{VIS} Illumination power at wavelengths ≥ 410nm and ≤ 800nm ⁽¹⁷⁾	20.5	W/cm ²
ILL _{IR} Illumination, wavelength between > 800nm	10	mW/cm ²
ILL _{BLU} Illumination power at wavelengths ≥ 410nm and ≤ 475nm ⁽¹⁷⁾	6.5	W/cm ²
ILL _{BLU1} Illumination power at wavelengths ≥ 410nm and ≤ 445nm ⁽¹⁷⁾	1.2	W/cm ²
ILL ₀ Illumination marginal ray angle ⁽¹⁸⁾	55	

⁽¹⁾ The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are required to operate the DMD.

Product Folder Links: DLP472TP

⁽²⁾ All voltage values are with respect to the V_{SS} ground pins.

⁽³⁾ V_{OFFSET} supply transients must fall within specified max voltages.

⁽⁴⁾ To prevent excess current, the supply voltage delta $|V_{DDI} - V_{DD}|$ must be less than the specified limit.

⁵⁾ To prevent excess current, the supply voltage delta |V_{BIAS} - V_{OFFSET}| must be less than the specified limit.

- (6) To prevent excess current, the supply voltage delta |V_{BIAS} V_{RESET}| must be less than the specified limit.
- (7) LS CLK must run as specified to ensure internal DMD timing for reset waveform commands.
- (8) Refer to the SubLVDS timing requirements in 节 5.8.
- (9) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will reduce device lifetime.
- (10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point (TP1) and the package thermal resistance using the Micromirror Array Temperature Calculation.
- (11) Per Maximum Recommended Array Temperature—Derating Curve, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty cycle.
- (12) Long-term is defined as the usable life of the device.
- (13) Short-term is the total cumulative time over the useful life of the device.
- (14) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge. The window test points TP2, TP3, TP4, and TP5 are intended to result in the worst case delta temperature. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.
- (15) The average over time (including storage and operating) that the device is not in the 'elevated dew point temperature range'.
- (16) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}.
- (17) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength range specified and the micromirror array temperature (T_{ARRAY}).
- (18) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will contribute to thermal limitations described in this document, and may negatively affect lifetime.

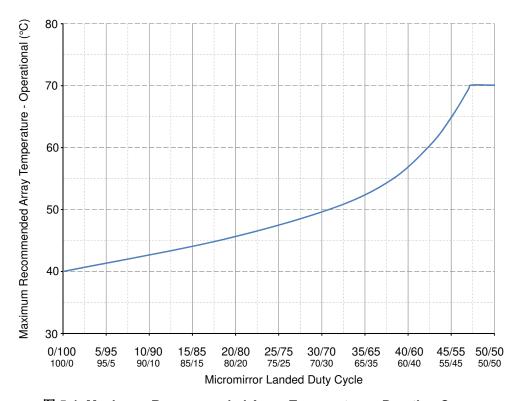


图 5-1. Maximum Recommended Array Temperature—Derating Curve

5.5 Thermal Information

	DLP472TP	
THERMAL METRIC	FQY	UNIT
	163 PIN	
THERMAL INFORMATION		

Product Folder Links: DLP472TP

Copyright © 2024 Texas Instruments Incorporated

5.5 Thermal Information (续)

	DLP472TP	
THERMAL METRIC	FQY	UNIT
	163 PIN	
Thermal Resistance, active area to test point 1 (TP1) ⁽¹⁾	1.2	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the DMD within the temperature range specified in the Recommended Operating Conditions. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

5.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted) (1)

	PARAMETER ⁽⁷⁾	TEST CONDITIONS (2)	MIN	TYP MAX	UNIT
CURRENT		'	'		
I _{DD}	Supply current: V _{DD} ⁽³⁾ ⁽⁴⁾	Typical		140	mA
I _{DDI}	Supply current: V _{DDI} ⁽³⁾ ⁽⁴⁾	Typical		45	mA
I _{OFFSET}	Supply current: V _{OFFSET} (5) (6)	Typical		6	mA
I _{BIAS}	Supply current: V _{BIAS} ⁽⁵⁾ ⁽⁶⁾	Typical		.5	mA
I _{RESET}	Supply current: V _{RESET} ⁽⁶⁾	Typical	-1.8		mA
POWER	·				•
P _{DD}	Supply power dissipation: V _{DD} ⁽³⁾ ⁽⁴⁾	Typical		252	mW
P _{DDI}	Supply power dissipation: V _{DDI} ^{(3) (4)}	Typical		81	mW
P _{OFFSET}	Supply power dissipation: V _{OFFSET} (5) (6)	Typical		60	mW
P _{BIAS}	Supply power dissipation: V _{BIAS} (5) (6)	Typical		9	mW
P _{RESET}	Supply power dissipation: V _{RESET} ⁽⁶⁾	Typical		25.2	mW
P _{TOTAL}	Supply power dissipation Total	Typical		427.2	mW
LPSDR INPU	JT				•
V _{IH}	High-level input voltage ^{(8) (9)}		0.7 x V _{DD}	V _{DD} + 0.3	x VDD
V _{IL}	Low-level input voltage ⁽⁸⁾ (9)		- 0.3	0.3 x V _{DD}	x VDD
V _{IH(AC)}	AC input high voltage ⁽⁸⁾ (9)		0.8 × V _{DD}	V _{DD} + 0.3	x VDD
V _{IL(AC)}	AC input low voltage ⁽⁸⁾ (9)		- 0.3	0.2 × V _{DD}	x VDD
VHyst	Input Hysteresis (V _{T+} - V _{T-}) ⁽¹¹⁾		0.1 × V _{DD}	0.4 × V _{DD}	V
I _{IL}	Low level input current	V _{DD} = 1.95 V, V _I = 0V	-100		nA
I _{IH}	High level input current	V _{DD} = 1.95 V, V _I = 1.95V		135	uA
LPSDR OUT	PUT		'		
V _{OH}	DC output high voltage ⁽¹⁰⁾	I _{OH} = -2 mA	0.8 x V _{DD}		X VDD
V _{OL}	DC output low voltage ⁽¹⁰⁾	I _{OL} = 2 mA		0.2 x V _{DD}	X VDD
CAPACTIAN	CE	'	-		
C _{IN}	Input capacitance LVCMOS	F = 1 MHz		10	pF
C _{IN}	Input capacitance SubLVDS	F = 1 MHz		20	pF
C _{OUT}	Output capacitance	F = 1 MHz		10	pF

- (1) Device electrical characteristics are over 节 5.4 unless otherwise noted.
- (2) All voltage values are with respect to the ground pins (V_{SS}).
- (3) To prevent excess current, the supply voltage delta $|V_{DDI} V_{DD}|$ must be less than the specified limit.
- (4) Supply power dissipation based on non compressed commands and data.

提交文档反馈

- (5) To prevent excess current, the supply voltage delta $|V_{BIAS} V_{OFFSET}|$ must be less than the specified limit.
- (6) Supply power dissipation based on 3 global resets in 200 μs.
- (7) All power supply connections are required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, V_{RESET}. All V_{SS} connections are also required.
- (8) LPSDR specifications are for pins LS_CLK and LS_WDATA.
- (9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.
- (10) LPSDR output specification is for pins LS_RDATA_A, LS_RDATA_B, LS_RDATA_C, LS_RDATA_D.
- (11) Refer to Figure 6-10

5.7 Switching Characteristics

Over operating free-air temperature range (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t _{PD}	Output propagation, clock to Q, rising edge of LS_CLK input to LS_RDATA output.	C _L = 45 pF		15	ns
	Slew rate, LS_RDATA		0.3		V/ns
	Output duty cycle distortion, LS_RDATA		40	60	%

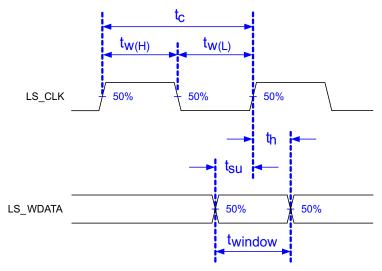
(1) Device electrical characteristics are over † 5.4 unless otherwise noted.

5.8 Timing Requirements

Over operating free-air temperature range (unless otherwise noted) (1)

	aling free-diff temperature range		MIN	NOM	MAX	UNIT
LPSDR						
t _f	Fall slew rate (2)	(80% to 20%) × V _{DD} ⁽⁵⁾	0.25			V/ns
t _c	Cycle time LS_CLK ⁽⁵⁾	50% to 50% reference points ⁽⁵⁾	7.7	8.3		ns
t _r	Rise slew rate (1)	(30% to 80%) × V _{DD} ⁽⁶⁾	1		3	V/ns
t _f	Fall slew rate (1)	(70% to 20%) x V _{DD} ⁽⁶⁾	1		3	V/ns
t _r	Rise slew rate (2)	(20% to 80%) × V _{DD} ⁽⁶⁾	0.25			V/ns
t _{W(H)}	Pulse duration LS_CLK high	50% to 50% reference points ⁽⁵⁾	3.1			ns
t _{W(L)}	Pulse duration LS_CLK low	50% to 50% reference points ⁽⁵⁾	3.1			ns
t _{WINDOW}	Window time ⁽¹⁾ (3)	Setup time + Hold time ⁽⁵⁾	3			ns
t _{DERATING}	Window time derating ^{(1) (3)}	For each 0.25 V/ns reduction in slew rate below 1 V/ns ⁽⁸⁾		0.35		ns
t _{su}	Setup time	LS_WDATA valid before LS_CLK ⁽⁵⁾			1.5	ns
t _h	Hold time	LS_WDATA valid after LS_CLK ⁽⁵⁾			1.5	ns
SubLVDS						
t _r	Rise slew rate	20% to 80% reference points ⁽⁷⁾	0.7	1		V/ns
t _f	Fall slew rate	80% to 20% reference points ⁽⁷⁾	0.7	1		V/ns
t _c	Cycle time D_CLK ⁽⁹⁾	50% to 50% reference points ⁽⁹⁾	1.35	1.39		ns
t _{W(H)}	Pulse duration DCLK high	50% to 50% reference points ⁽⁹⁾	0.7			ns
t _{W(L)}	Pulse duration DCLK low	50% to 50% reference points ⁽⁹⁾	0.7			ns
t _{su}	Setup time	DATA valid before D_CLK ⁽⁹⁾			0.17	ns
t _h	Hold time	DATA valid after D_CLK ⁽⁹⁾			0.17	ns
t _{WINDOW}	Window time	Setup time + Hold time ⁽⁹⁾ (10)			0.25	ns
t _{POWER}	Power-up receiver ⁽⁴⁾				200	ns

- (1) Specification is for LS CLK and LS WDATA pins. Refer to LPSDR input rise and fall slew rate in Figure 6-3
- (2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 6-3
- (3) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.
- (4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.


Product Folder Links: DLP472TP

- (5) See Figure 6-2.
- (6) See Figure 6-3.
- (7) See Figure 6-4.

Copyright © 2024 Texas Instruments Incorporated

- See Figure 6-5.
- See Figure 6-6.
- (10) See Figure 6-7.

The low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B.

图 5-2. LPSDR Switching Parameters

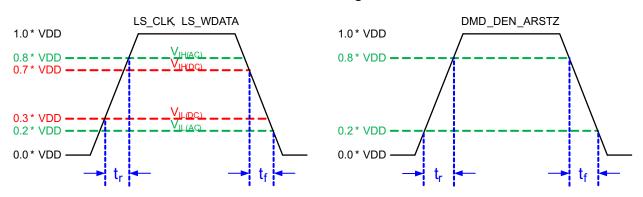
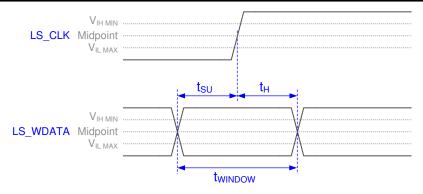


图 5-3. LPSDR Input Rise and Fall Slew Rate


Not to Scale

 $V_{\text{DCLK_P}}$, $V_{\text{DCLK_N}}$, $V_{\text{D_P(7:0)}}$, $V_{\text{D_N(7:0)}}$

图 5-4. SubLVDS Input Rise and Fall Slew Rate

Product Folder Links: DLP472TP

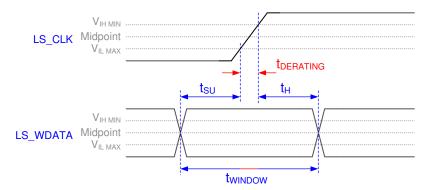


图 5-5. Window Time Derating Concept

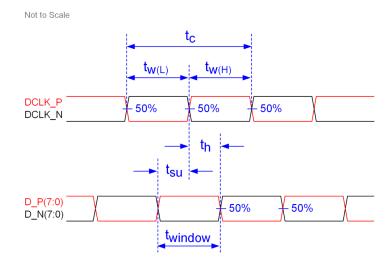
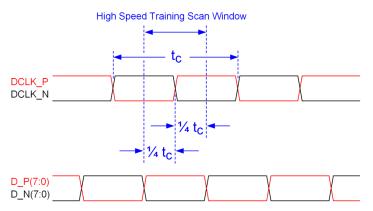



图 5-6. SubLVDS Switching Parameters

Note: Refer to $\footnote{1}{3}\footnote{1}\footnote{1}{3}\footnote{1}{3}\footnote{1}{3}\footnote{1}{3}\footnote{1}\footnote{1}{3}\footnote{1}{3}\footnote{1}{3}\footnote{1}\footnote{1}\footnote{1}{3}\footnote{1}\foot$

图 5-7. High-Speed Training Scan Window

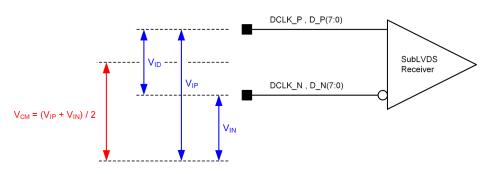


图 5-8. SubLVDS Voltage Parameters

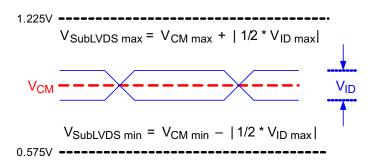


图 5-9. SubLVDS Waveform Parameters

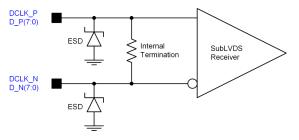


图 5-10. SubLVDS Equivalent Input Circuit

Product Folder Links: DLP472TP

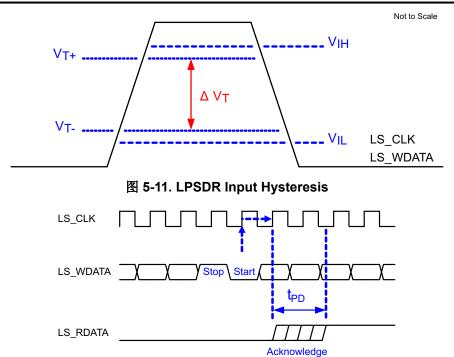
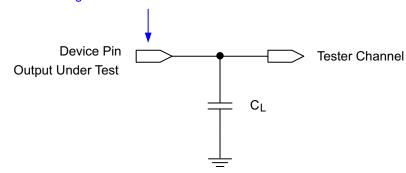



图 5-12. LPSDR Read Out

Data Sheet Timing Reference Point

See ^{††} 5.6 for more information.

图 5-13. Test Load Circuit for Output Propagation Measurement

English Data Sheet: DLPS247

5.9 System Mounting Interface Loads

PARAMETER	CONDITION	MIN	NOM	MAX	UNIT
Thermal Interface Area	Maximum load evenly distributed within each area (1)			73.5	N
Electrical Interface Area	Maximum load evenly distributed within each area (1)			150	11

(1) See Figure 6-14.

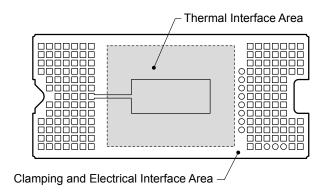


图 5-14. System Mounting Interface Loads

5.10 Micromirror Array Physical Characteristics

PARAMETER DESCRIPTION		VALUE	UNIT
Number of active columns (1) (2)	M	1920	micromirrors
Number of active rows (1) (2)	N	1080	micromirrors
Micromirror (pixel) pitch (1)	P	5.4	μm
Micromirror active array width (1)	Micromirror pitch × number of active columns	10.368	mm
Micromirror active array height (1)	Micromirror pitch × number of active columns	5.832	mm
Micromirror active border (3)	Pond of micromirror (POM)	20	micromirrors/side

- (1) See Figure 6-15
- (2) The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in a full 3840 x 2160 pixel image being displayed.
- (3) The structure and qualities of the bordere around the active array includes a band of partially functional micromirrors referred to as the i{Pond of Micromirrors} (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state but still require an electrical bias to tilt toward the OFF state.

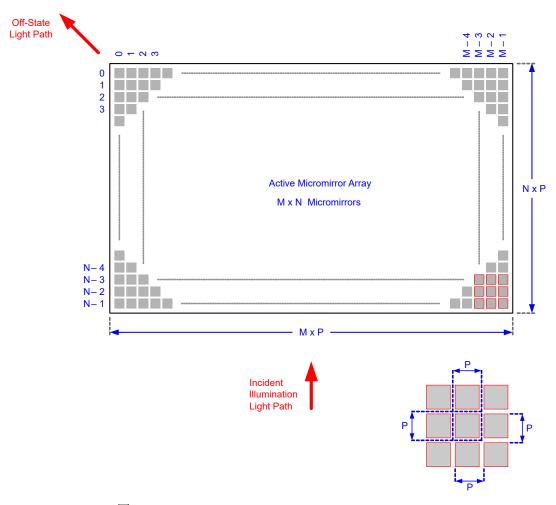


图 5-15. Micromirror Array Physical Characteristics

5.11 Micromirror Array Optical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Micromirror tilt ang	le	Landed state (1)		17		0
Micromirror tilt ang	le tolerance (2) (3) (4) (5)		-1.4		1.4	o
Micromirror tilt dire	ection ^{(6) (7)}	Landed ON state		270		0
Micromirror tilt dire	ection ^{(6) (7)}	Landed OFF state		180		0
Micromirror crossover time (8)		Typical Performance		1	3	
Micromirror switch	Micromirror switching time (9)		6			μs
	Bright pixel(s) in active area (11)	Gray 10 Screen (12)			0	
	Bright pixel(s) in the POM (13)	Gray 10 Screen (12)			1	
Image Performance (10)	Dark pixel(s) in the active area (14)	White Screen			4	micromirrors
	Adjacent pixel(s) (15)	Any Screen			0	
	Unstable pixel(s) in active area (16)	Any Screen			0	

- (1) Measured relative to the plane formed by the overall micromirror array.
- (2) Additional variation exists between the micromirror array and the package datums.
- (3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.
- (4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.

Product Folder Links: DLP472TP

www.ti.com.cn ZHCSS93 - AUGUST 2024

- For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations.
- When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See the Micromirror Landed Orientation and Tilt Figure 6-16.
- Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° degree reference which is aligned with the +X Cartesian axis.
- The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
- The minimum time between successive transitions of a micromirror.
- (10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions: Test set degamma shall be linear

Test set brightness and contrast shall be set to nominal

The diagonal size of the projected image shall be a minimum of 20 inches

The projections screen shall be 1X gain

The projected image shall be inspected from a 38 inch minimum viewing distance

The image shall be in focus during all image quality tests

- (11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels
- (12) Gray 10 screen definition: All areas of the screen are colored with the following settings:

Red = 10/255

Green = 10/255

Blue = 10/255

- (13) POM definition: Rectangular border of off-state mirrors surrounding the active area
- (14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels
- (15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster
- (16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image

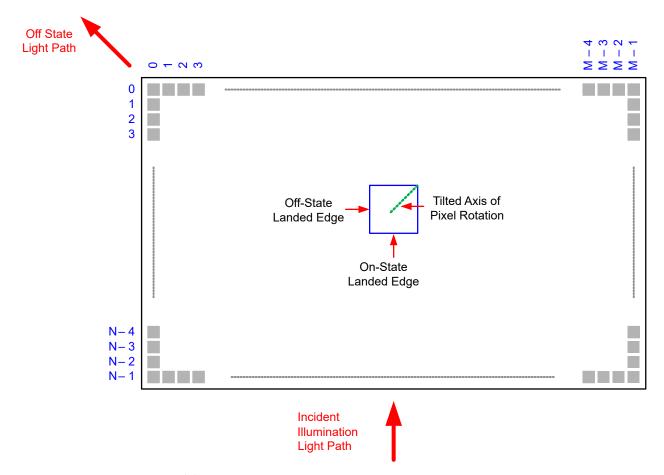


图 5-16. Micromirror Landed Orientation and Tilt

5.12 Window Characteristics

	DESCRIPTION ⁽¹⁾	MIN	TYP	MAX
Window material			Corning Eagle XG	
Window refractive index	At wavelength 546.1 nm		1.5119	
Window aperture ⁽²⁾			See ⁽²⁾ .	
Illumination overfill ⁽³⁾			See ⁽³⁾ .	
Window transmittance, single-pass	Minimum within the wavelength range 420 nm to 680 nm. Applies to all angles 0° to 30° AOI. (4)	97%		
through both surfaces and glass	Average over the wavelength range 420 nm to 680 nm. Applies to all angles 30° to 45° AOI. (4)	97%		

- (1) See Section 7.5
- (2) See the package mechanical characteristics for details regarding the size and location of the window aperture.
- (3) The active area of the DMD device is surrounded by an aperture on the inside of the window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux level in the active area. Depending on the particular system"s optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation.
- (4) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface.

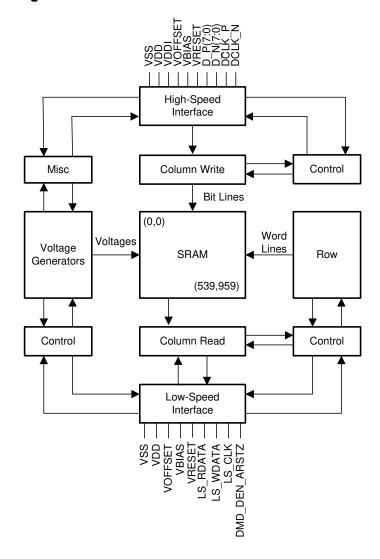
5.13 Chipset Component Usage Specification

Reliable function and operation of the DLP472TP DMD requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices used for operating or controlling a DLP DMD.

备注

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *DLP472TP*


6 Detailed Description

6.1 Overview

The DLP472TP DMD is a 0.47-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system (MOEMS). The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in a full 3840 × 2160 pixel image being displayed. The electrical interface is low voltage differential signaling (LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows. Refer to the Functional Block Diagram. The positive or negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).

The DLP 0.47" 4K UHD chipset is comprised of the DLP472TP DMD, DLPC8445 display controller, and the DLPA3085 PMIC driver. To ensure reliable operation, the DLP472TP DMD must always be used with the DLP display controller and the PMIC specified in the chipset.

6.2 Functional Block Diagram

Product Folder Links: DLP472TP

6.3 Feature Description

6.3.1 Power Interface

The DMD requires 4 DC voltages: 1.8V source, V_{OFFSET} , V_{RESET} , and V_{BIAS} . In a typical LED-based system, 1.8V, V_{OFFSET} , V_{RESET} , and V_{BIAS} is managed by the DLPA3085 PMIC and LED driver.

6.3.2 LPSDR Low-Speed Interface

The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS CLK is the low-speed clock, and LS_WDATA is the low speed data input.

6.3.3 High-Speed Interface

The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed DDR transfer and compression techniques to save power and time. The high-speed interface is composed of differential SubLVDS receivers for inputs, with a dedicated clock.

6.3.4 Timing

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be considered.

§ 5-13 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended to be precise representations of any particular system environment or depiction of the actual load presented by a production test. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

6.4 Device Functional Modes

DMD functional modes are controlled by the DLPC8445 display controller. See the DLPC8445 display controller data sheet or contact a TI applications engineer.

6.5 Optical Interface and System Image Quality Considerations

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

6.5.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination and projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts in the display border and active area could occur.

6.5.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display border and active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

> Copyright © 2024 Texas Instruments Incorporated Product Folder Links: DLP472TP

6.5.3 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

6.6 Micromirror Array Temperature Calculation

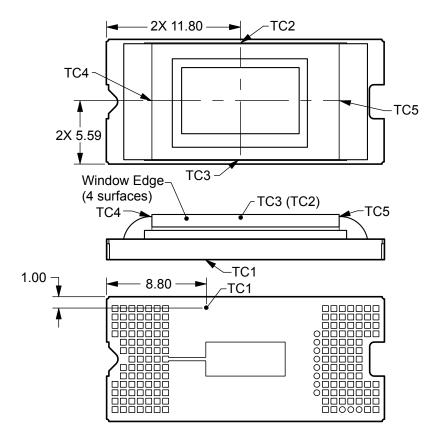


图 6-1. DMD Thermal Test Points

Product Folder Links: DLP472TP

Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship between array temperature and the reference ceramic temperature (thermal test TC1/TP1 in \boxtimes 6-1) is provided by the following equations:

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$

$$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$

where

- T_{ARRAY} = Computed array temperature (°C)
- T_{CERAMIC} = Measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = Thermal resistance of package specified in 图 6-1 from array to ceramic TP1 (°C/Watt)
- Q_{ARRAY} = Total DMD power on the array (W) (electrical + absorbed)
- Q_{ELECTRICAL} = Nominal electrical power (W)
- Q_{INCIDENT} = Incident illumination optical power (W)
- Q_{ILLUMINATION} = (DMD average thermal absorptivity × Q_{INCIDENT}) (W)
- DMD average thermal absorptivity = 0.4

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 1.0 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD system. It assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border.

The sample calculation for a typical projection application is as follows:

```
Q_{\text{INCIDENT}} = 9.4 \text{W (measured)}
T_{\text{CERAMIC}} = 55.0^{\circ}\text{C (measured)}
Q_{\text{ELECTRICAL}} = 1.0 \text{W}
Q_{\text{ARRAY}} = 1.0 \text{W} + (0.40 \times 9.4 \text{W}) = 4.76 \text{W}
T_{\text{ARRAY}} = 55.0^{\circ}\text{C} + (4.76 \text{ W} \times 1.2^{\circ}\text{C/W}) = 60.7^{\circ}\text{C}
```

6.7 Micromirror Power Density Calculation

The calculation of the optical power density of the illumination on the DMD in the different wavelength bands uses the total measured optical power on the DMD, percent illumination overfill, area of the active array, and ratio of the spectrum in the wavelength band of interest to the total spectral optical power.

- ILL_{UV} = [OP_{UV-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²)
- ILL_{VIS} = [OP_{VIS-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)
- ILL_{IR} = [OP_{IR-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²)
- ILL_{BLU} = [OP_{BLU-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)
- ILL_{BLU1} = [OP_{BLU1-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)

English Data Sheet: DLPS247

Product Folder Links: DLP472TP

• $A_{ILL} = A_{ARRAY} \div (1 - OV_{ILL}) (cm^2)$

where:

- ILL_{UV} = UV illumination power density on the DMD (mW/cm²)
- ILL_{VIS} = VIS illumination power density on the DMD (W/cm²)
- ILL_{IR} = IR illumination power density on the DMD (mW/cm²)
- ILL_{BLII} = BLU illumination power density on the DMD (W/cm²)
- ILL_{BLU1} = BLU1 illumination power density on the DMD (W/cm²)
- A_{ILL} = illumination area on the DMD (cm²)
- Q_{INCIDENT} = total incident optical power on DMD (W) (measured)
- A_{ARRAY} = area of the array (cm²) (data sheet)
- OV_{ILL} = percent of total illumination on the DMD outside the array (%) (optical model)
- OP_{UV-RATIO} = ratio of the optical power for wavelengths <410nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{VIS-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤800nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{IR-RATIO} = ratio of the optical power for wavelengths >800nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{BLU-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤475nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{BLU1-RATIO} = ratio of the optical power for wavelengths ≥410nm and ≤445nm to the total optical power in the illumination spectrum (spectral measurement)

The illumination area varies and depends on the illumination overfill. The total illumination area on the DMD is the array area and the overfill area around the array. The optical model is used to determine the percent of the total illumination on the DMD that is outside the array (OV_{ILL}) and the percent of the total illumination that is on the active array. From these values, the illumination area (A_{ILL}) is calculated. The illumination is assumed to be uniform across the entire array.

From the measured illumination spectrum, the ratio of the optical power in the wavelength bands of interest to the total optical power is calculated.

Product Folder Links: DLP472TP

Sample calculation:

Q_{INCIDENT} = 9.40W (measured)

 $A_{ARRAY} = ((10.368 \text{mm} \times 5.832 \text{mm}) \div 100) = 0.6047 \text{cm}^2 \text{ (data sheet)}$

OV_{ILL} = 16.3% (optical model)

OP_{UV-RATIO} = 0.00021 (spectral measurement)

OP_{VIS-RATIO} = 0.99977 (spectral measurement)

OP_{IR-RATIO} = 0.00002 (spectral measurement)

OP_{BLU-RATIO} = 0.28100 (spectral measurement)

OP_{BLU1-RATIO} = 0.03200 (spectral measurement)

$$\begin{split} &A_{ILL} = 0.6047 \text{cm}^2 \div (1 - 0.163) = 0.7224 \text{cm}^2 \\ &ILL_{UV} = [0.00021 \times 9.40 \text{W}] \times 1000 \div 0.7224 \text{cm}^2 = 2.732 \text{mW/cm}^2 \\ &ILL_{VIS} = [0.99977 \times 9.40 \text{W}] \div 0.7224 \text{cm}^2 = 13.01 \text{mW/cm}^2 \\ &ILL_{IR} = [0.00002 \times 9.40 \text{W}] \times 1000 \div 0.7224 \text{cm}^2 = 0.260 \text{mW/cm}^2 \\ &ILL_{BLU} = [0.28100 \times 9.40 \text{W}] \div 0.7224 \text{cm}^2 = 3.66 \text{mW/cm}^2 \\ &ILL_{BLU1} = [0.03200 \times 9.40 \text{W}] \div 0.7224 \text{cm}^2 = 0.42 \text{mW/cm}^2 \end{split}$$

6.8 Micromirror Landed-On/Landed-Off Duty Cycle

6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the percentage of time that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

For example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time (and in the OFF state 0% of the time); whereas 0/100 would indicate that the pixel is in the OFF state 100% of the time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).

Note that when assessing the landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100.

6.8.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD useful life.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

6.8.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD temperature and landed duty cycle interact to affect DMD useful life, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD useful life. This is quantified in the derating curve shown in $\boxed{8}$ 5-1. The importance of this curve is that:

- All points along this curve represent the same useful life.
- All points above this curve represent lower useful life (and the further away from the curve, the lower the useful life).
- All points below this curve represent higher useful life (and the further away from the curve, the higher the useful life).

This curve specifies the maximum operating DMD temperature that the DMD should be operated at for a given long-term average landed duty cycle.

6.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel.

Product Folder Links: DLP472TP

Copyright © 2024 Texas Instruments Incorporated

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel operates under a 0/100 landed duty cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 表 6-1.

表 6-1. Grayscale Value	表 6-1. Grayscale Value and Landed Duty Cycle					
GRAYSCALE VALUE	LANDED DUTY CYCLE					
0%	0/100					
10%	10/90					
20%	20/80					
30%	30/70					
40%	40/60					
50%	50/50					
60%	60/40					
70%	70/30					
80%	80/20					
90%	90/10					
100%	100/0					

車 6.1. Grovessale Value and Landad Duty Cycle

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

Use 方程式 1 to calculate the landed duty cycle of a given pixel during a given time period.

where

- Red Cycle %, represents the percentage of the frame time that red is displayed to achieve the desired white point
- Green Cycle % represents the percentage of the frame time that green is displayed to achieve the desired white point
- Blue Cycle %, represents the percentage of the frame time that blue is displayed to achieve the desired white point

For example, assume that the red, green, and blue color cycle times are 30%, 50%, and 20% respectively (in order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue color intensities would be as shown in \pm 6-2 and \pm 6-3.

表 6-2. Example Landed Duty Cycle for Full-Color, **Color Percentage**

CYCLE PERCENTAGE					
RED	BLUE				
30%	50%	20%			

Product Folder Links: DLP472TP

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: DLPS247

表 6-3. Example Landed Duty Cycle for Full-Color

S	SCALE VALUE				
RED	GREEN	BLUE	CYCLE		
0%	0%	0%	0/100		
100%	0%	0%	50/50		
0%	100%	0%	20/80		
0%	0%	100%	30/70		
12%	0%	0%	6/94		
0%	35%	0%	7/93		
0%	0%	60%	18/82		
100%	100%	0%	70/30		
0%	100%	100%	50/50		
100%	0%	100%	80/20		
12%	35%	0%	13/87		
0%	35%	60%	25/75		
12%	0%	60%	24/76		
100%	100%	100%	100/0		

The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the controller, the gamma function affects the landed duty cycle.

Gamma is a power function of the form $Output_Level = A \times Input_Level^{Gamma}$, where A is a scaling factor that is typically set to 1.

In the controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A typical gamma factor is 2.2, which transforms the incoming data as shown in 8 6-2.

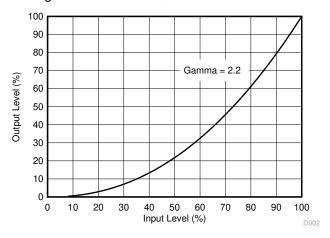


图 6-2. Example of Gamma = 2.2

From 8 6-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale value will be 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact displayed gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.

Consideration must also be given to any image processing which occurs before the controller.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *DLP472TP*

7 Application and Implementation

备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

7.1 Application Information

DMDs are spatial light modulators that reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC8445 controller. The high tilt pixel in the bottom-illuminated DMD increases brightness performance and enables a smaller system footprint for thickness-constrained applications. Typical applications using the DLP472TP include mobile smart TVs and digital signage.

DMD power-up and power-down sequencing is strictly controlled by the DLPA3085 . Refer to \ddagger 8 for power-up and power-down specifications. To ensure reliable operation, the DLPA72TP DMD must always be used with the DLPC8445 controller and a DLPA3085 PMIC.

7.2 Typical Application

The DLP472TP DMD, combined with DLPC8445 digital controller and a power management device, provides full 4K UHD resolution for bright, colorful display applications. See [8] 7-1, which shows the system components needed along with the LED configuration of the DLP 0.47" 4K UHD chipset. The components include the DLP472TP DMD, the DLPC8445 display controller, and the DLPA3085 PMIC and LED driver.

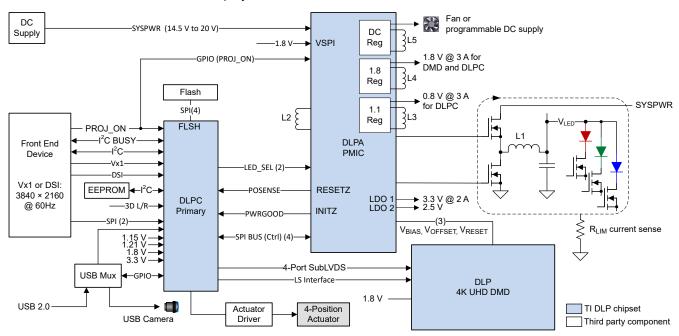


图 7-1. Typical 4K UHD LED Application Diagram

7.2.1 Design Requirements

Other core components of the display system include an illumination source, an optical engine for the illumination and projection optics, other electrical and mechanical components, and software. The type of illumination used and the desired brightness have a major effect on the overall system design and size.

Product Folder Links: DLP472TP

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

The display system uses the DLP472TP as the core imaging device and contains a 0.47-inch array of micromirrors. The DLPC8445 controller is the digital interface between the DMD and the rest of the system, taking digital input from the front-end receiver and driving the DMD over a high-speed interface. The DLPA3085 PMIC serves as a voltage regulator for the DMD, controller, and LED illumination functionality.

7.2.2 Detailed Design Procedure

For a complete DLP system, an optical module or light engine is required that contains the DLP472TP DMD, associated illumination sources, optical elements, and necessary mechanical components.

To ensure reliable operation, the DMD must always be used with the DLPC8445 display controller and the DLPA3085 PMIC driver.

7.2.3 Application Curve

The typical LED-current-to-luminance relationship when LED illumination is used is shown in \(\begin{align*} \begin{align*} 7-2. \end{align*} \]

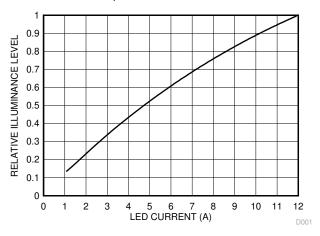


图 7-2. Luminance vs. Current

7.3 Temperature Sensor Diode

The software application provides functions to configure the TMP411 to read the DLP472TP DMD temperature sensor diode. Use this data to incorporate additional functionality in the overall system design, such as adjusting illumination, fan speeds, and so on. All communication between the TMP411 and the DLPC8445 controller is completed using the I^2C interface. The TMP411 connects to the DMD through the pins outlined in \ddagger 4.

Copyright © 2024 Texas Instruments Incorporated

8 Power Supply Recommendations

The following power supplies are all required to operate the DMD:

- V_{SS}
- V_{BIAS}
- V_{DD}
- V_{DDI}
- V_{OFFSET}
- V_{RESET}

DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.

小心

For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements may affect device reliability. See the DMD power supply sequencing requirements in 8.4.

 V_{BIAS} , V_{DD} , V_{DDI} , V_{OFFSET} , and V_{RESET} power supplies must be coordinated during power-up and power-down operations. Failure to meet any of the below requirements result in a significant reduction in the DMD reliability and lifetime. Common ground V_{SS} must also be connected.

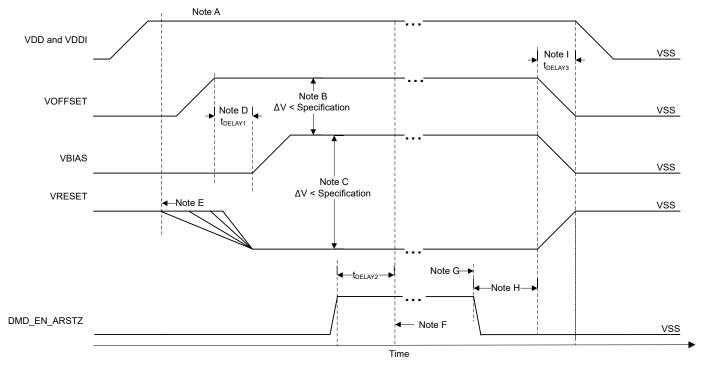
表 8-1. Power Supply Sequence Requirements

SYMBOL	PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
t _{DELAY}	Delay requirement	from V _{OFFSET} power up to V _{BIAS} power up	2			ms
V _{OFFSET}	Supply voltage level	at beginning of power-up sequence delay ⁽¹⁾			6	V
V _{BIAS}	Supply voltage level	at end of power-up sequence delay ⁽¹⁾			6	V

⁽¹⁾ See **8-1**, Power-Up Sequence Delay Requirement.

8.1 DMD Power Supply Power-Up Procedure

- During power-up, V_{DD} and V_{DDI} must always start and settle before V_{OFFSET} plus Delay1 specified in 表 8-2, V_{BIAS}, and V_{RESET} voltages are applied to the DMD.
- During power-up, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in ^{††} 5.4.
- During power-up, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}.
- Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements specified in 节 5.1, in 节 5.4, and in 图 8-1.
- During power-up, LVCMOS input pins must not be driven high until after V_{DD} have settled at operating voltages listed in 节 5.4.


8.2 DMD Power Supply Power-Down Procedure

- During power-down, V_{DD} and V_{DDI} must be supplied until after V_{BIAS}, V_{RESET}, and V_{OFFSET} are discharged to within the specified limit of ground. See ₹ 8-2.
- During power-down, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in ^{††} 5.4.
- During power-down, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements specified in 节 5.1, in 节 5.4, and in 图 8-1.
- During power-down, LVCMOS input pins must be less than specified in 节 5.4.

Product Folder Links: DLP472TP

English Data Sheet: DLPS247

- A. See † 4 for the Pin Functions Table.
- B. To prevent excess current, the supply voltage difference |V_{OFFSET} V_{BIAS}| must be less than the specified limit in † 5.4.
- C. To prevent excess current, the supply difference |VBIAS VRESET| must be less than the specified limit in † 5.4.
- D. V_{BIAS} should power up after V_{OFFSET} has powered up, per the Delay1 specification in $\frac{1}{8}$ 8-2.
- E. DLP controller software initiates the global V_{BIAS} command.
- F. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates DMD_EN_ARSTZ and disables V_{BIAS}, V_{RESET}, and V_{OFFSET}.
- G. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware DMD_EN_ARSTZ will go low.
- H. V_{DD} must remain high until after V_{OFFSET} , V_{BIAS} , and V_{RESET} go low, per Delay2 specification in $\frac{1}{8}$ 8-2.
- I. To prevent excess current, the supply voltage delta $|V_{DDI} V_{DD}|$ must be less than the specified limit in $\dagger 5.4$.

图 8-1. DMD Power Supply Requirements

表 8-2. DMD Power-Supply Requirements

PARAMETER	DESCRIPTION	MIN	NOM	MAX	UNIT
Delay1 ⁽¹⁾	Delay from V_{OFFSET} settled at recommended operating voltage to V_{BIAS} and V_{RESET} power up	1	2		ms
Delay2 ⁽¹⁾	Delay V_{DD} must be held high from V_{OFFSET} , V_{BIAS} , and V_{RESET} powering down.	50			μS

(1) See 8-1.

9 Layout

9.1 Layout Guidelines

The DLP472TP DMD connects to a PCB or a flex circuit using an interposer. For additional layout guidelines regarding length matching and impedance, see the DLPC8445 controller data sheet. For a detailed layout example, refer to the layout design files. Some layout guidelines for routing to the DLP472TP DMD are:

- Match lengths for the LS_WDATA and LS_CLK signals, as specified in the DLPC8445 controller data sheet.
- Match lengths for the HS bus differential signals as specified in the DLPC8445 controller data sheet.
- Minimize vias, layer changes, and turns for the HS bus signals. Refer to 图 9-1.
- Supply capacitance needs can vary per design. Refer to the layout design file for a general guideline.
 Supplies need to be verified on the design to ensure all supplies are operating in the recommended operating range at the DMD.

Product Folder Links: DLP472TP

9.2 Layout Example

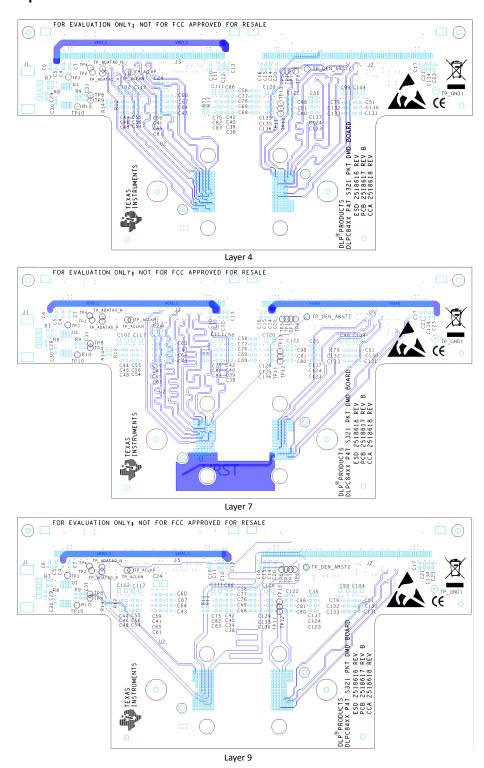


图 9-1. Routing Example

10 器件和文档支持

10.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

10.2 器件支持

10.2.1 器件命名规则

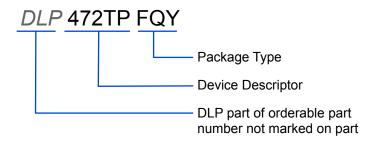


图 10-1. 器件型号说明

10.2.2 器件标识

器件标识包括人类可读的信息和二维矩阵码。图 10-2 说明了可供人类读取的信息,其中包括 GHJJJJK 472TPFQY 这一清晰可辨的字符串。GHJJJJK 是批次追踪代码,472TPFQY 则是器件标识。

示例: GHJJJJK DLP472TPFQY

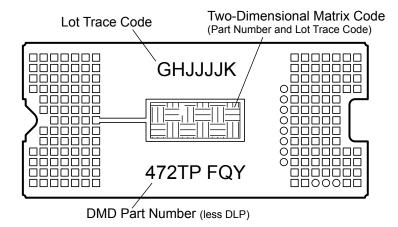


图 10-2. DMD 标识位置

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

10.3 文档支持

10.3.1 相关文档

以下文档包含与该 DMD 一起使用的芯片组元件相关的更多信息。

- DLPC8445 高分辨率控制器数据表
- DLPA3085 PMIC 和高电流 LED 驱动器 IC 数据表

10.4 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.5 商标

DLP® is a registered trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.6 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.7 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

11 Revision History

注:以前版本的页码可能与当前版本的页码不同

DATE	REVISION	NOTES			
August 2024	*	Initial Release			

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *DLP472TP*

DLP472TP ZHCSS93 - AUGUST 2024

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知, 且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

www.ti.com 20-Nov-2025

PACKAGING INFORMATION

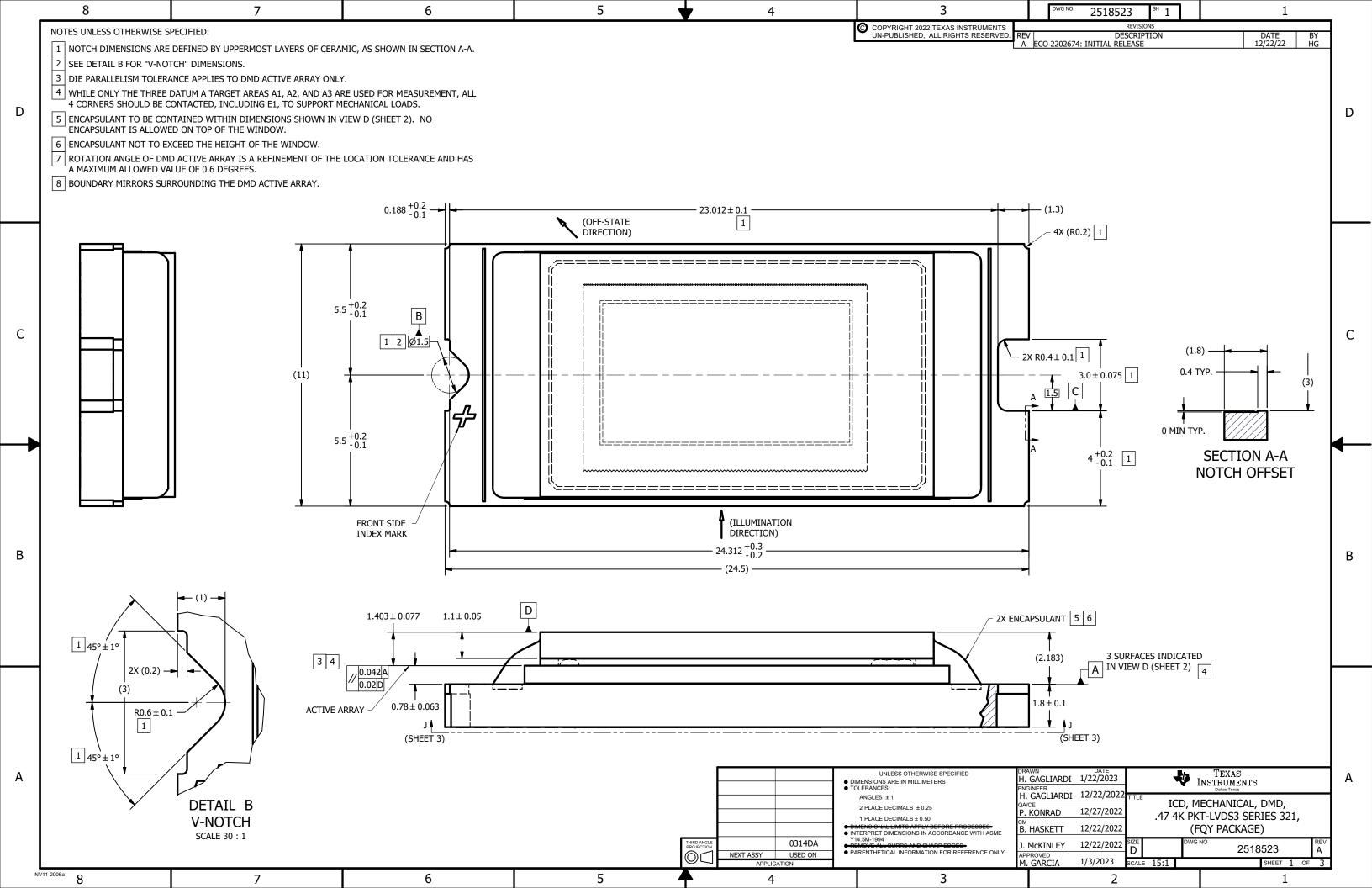
Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
DLP472TPFQY	Active	Production	CLGA (FQY) 174	80 JEDEC TRAY (5+1)	In-Work	NIAU	N/A for Pkg Type	0 to 70	
DLP472TPFQY.B	Active	Production	CLGA (FQY) 174	80 JEDEC TRAY (5+1)	In-Work	NIAU	N/A for Pkg Type	0 to 70	

⁽¹⁾ Status: For more details on status, see our product life cycle.

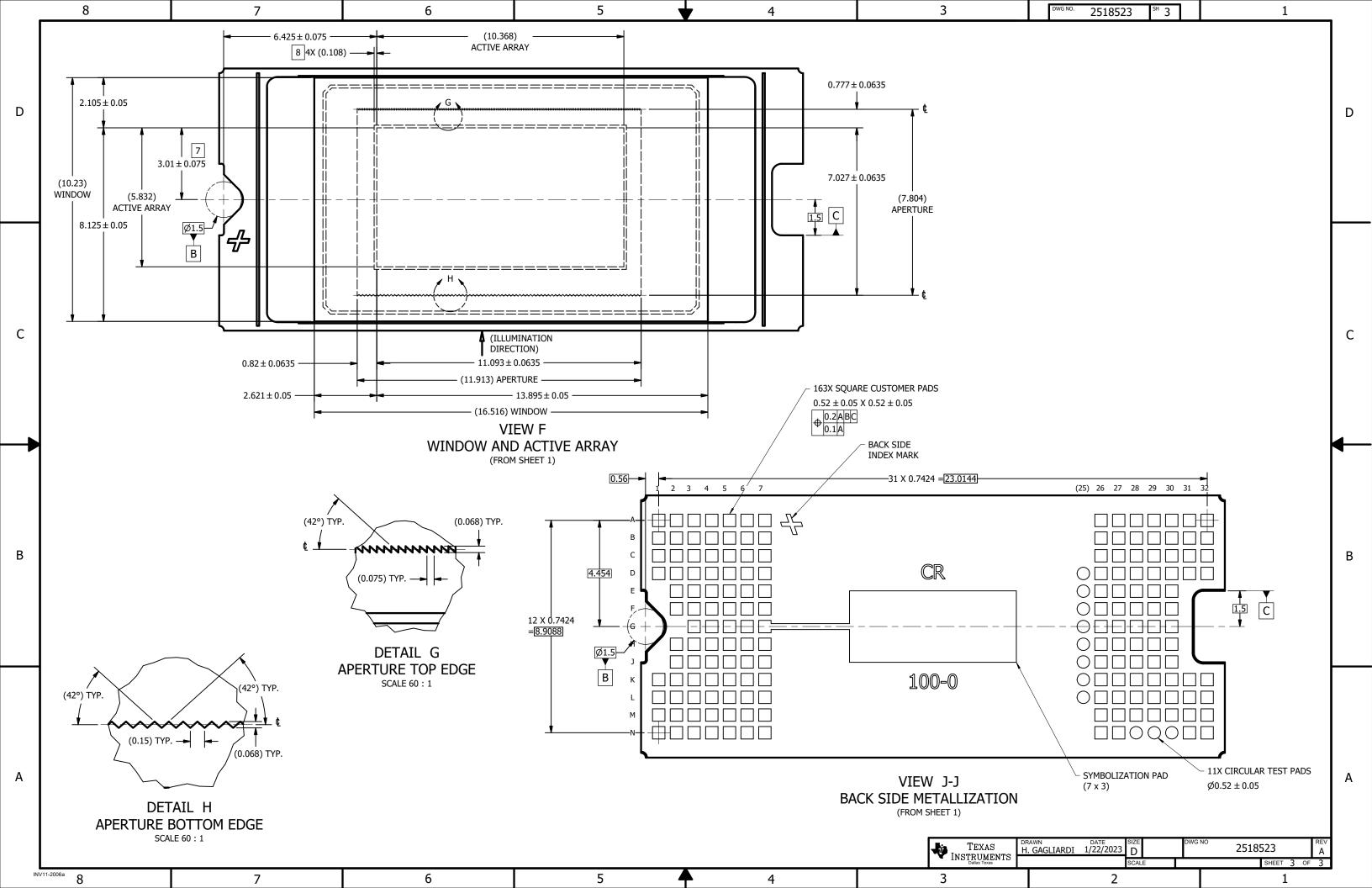
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月