

DAC5670-SP

SGLS386F - JANUARY 2009-REVISED OCTOBER 2014

DAC5670-SP 14-Bit 2.4-GSPS Digital-to-Analog Converter (DAC)

Features

- 14-Bit Resolution
- 2.4-GSPS Max Update Rate DAC
- **Dual Differential Input Ports**
 - Even/Odd Demultiplexed Data
 - Maximum 1.2 GSPS Each Port, 2.4 GSPS Total
 - Dual 14-Bit Inputs + 1 Reference Bit
 - DDR Output Clock
 - DLL Optimized Clock Timing Synchronized to Reference Bit
 - LVDS and HyperTransport[™] Voltage Level Compatible
 - Internal 100-Ω Terminations for Data and Reference Bit Inputs
- Selectable 2x Interpolation With Fs / 2 Mixing
- Differential Scalable Current Outputs: 5 to 30 mA
- On-Chip 1.2-V Reference
- 3.3-V Analog Supply Operation
- Power Dissipation: 2 W
- 192-Ball CBGA (GEM) Package
- QML-V Qualified, SMD 5962-07247
- Military Temperature Range (-55°C to 125°C

Applications

- Test and Measurement: Arbitrary Waveform Generator
- Communications
- Engineering evaluation (/EM) samples are available
- These units are intended for engineering evaluation only. They are processed to a non-compliant flow (that is, no burnin, and so forth) and are tested to a temperature rating of 25°C only. These units are not suitable for qualification, production, radiation testing, or flight use. Parts are not warranted for performance over the full MIL specified temperature range of -55°C to 125°C or operating life.

3 Description

The DAC5670 is a 14-bit 2.4-GSPS DAC with dual demultiplexed differential input ports. The DAC5670 is clocked at the DAC sample rate and the two input ports run at a maximum of 1.2 GSPS. An additional reference bit input sequence is used to adjust the output clock delay to the data source, optimizing the internal data latching clock relative to this reference bit with a delay lock loop (DLL). Alternatively, the DLL may be bypassed and the timing interface managed by controlling DATA setup and hold timing to DLYCLK.

The DAC5670 can also accept data up to 1.2 GSPS using only the A input port. In the single port modes, options include: repeating the input sample (A_ONLY mode), 2x interpolation by zero stuff (A_ONLY_ZS mode), or 2x interpolation by repeating and inverting the input sample (A_ONLY_INV). These modes are used to double the input sample rate up to 2.4 GSPS.


The DAC5670 operates with a single 3- to 3.6-V supply voltage. Power dissipation is 2 W at maximum operating conditions. The DAC5670 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. An on-chip 1.2-V temperaturebandgap reference and compensated amplifier allows the user to adjust the full-scale output current from the nominal 20 mA to as low as 5 mA or as high as 30 mA.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
DAC5670-SP	CBGA (192)	19.00 mm × 19.00 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Features 1		8.1 Overview	18
2	Applications 1		8.2 Functional Block Diagram	15
3	Description 1		8.3 Feature Description	15
4	Revision History2		8.4 Device Functional Modes	24
5	Description (continued)3	9	Application and Implementation	26
6	Pin Configuration and Functions		9.1 Application Information	26
7	_		9.2 Typical Application	26
′	Specifications	10	Power Supply Recommendations	28
	7.1 Absolute Maximum Ratings	11	Layout	
	7.2 Handling Ratings		11.1 Layout Guidelines	
	7.3 Recommended Operating Conditions		11.2 Layout Example	
	7.5 DC Electrical Characteristics	12	Device and Documentation Support	
	7.6 AC Electrical Characteristics		12.1 Device Support	
	7.5 AC Electrical Characteristics		12.2 Trademarks	
	7.7 Digital Electrical Characteristics		12.3 Electrostatic Discharge Caution	
	7.9 Typical Characteristics		12.4 Glossary	
8	Detailed Description	13	Mechanical, Packaging, and Orderable Information	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision E (December 2013) to Revision F	Page
•	Added Handling Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Corrected Setup/Hold Data to DLYCLK values to be frequency independent	11
<u>•</u>	Updated DLL Usage section	17
CI	hanges from Revision D (May 2013) to Revision E	Page
•	Added /EM bullet to Applications section	1
•	Deleted Available Options table	3

5 Description (continued)

The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer-coupled output with a $50-\Omega$ doubly-terminated load.

The DAC5670 is available in a 192-ball CBGA package. The device is characterized for operation over the military temperature range (-55° C to 125 $^{\circ}$ C T_{case}).

6 Pin Configuration and Functions

Ball Grid Array 192 Pins

	A	В	С	D	E	F	G	н	J	к	L	М	N	Р
1		DB9_P	DB9_N	DB7_N	DB7_P	DB3_N	DB3_P	DB4_N	DB4_P	DB1_P	DB1_N	DB0_P	DB0_N	
2	DB10_N	GND	DB8_P	DB8_N	DB5_N	DB5_P	AVDD	AVDD	DB2_P	DB2_N	AVDD	GND	GND	CSCAP_IN
3	DB10_P	GND	AVDD	DB6_P	AVDD	GND	GND	GND	GND	AVDD	REFIO	AVDD	GND	CSCAP
4	DB12_P	DB11_P	AVDD	DB6_N	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	REFIO_IN	AVDD	AVDD	RBIAS_IN
5	DB12_N	DB11_N	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	GND	RBIAS_OUT
6	DLYCLK_N	DB13_N	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	IOUT_N	GND	
7	DLYCLK_P	DB13_P	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	IOUT_P	GND	GND
8	DTCLK_N	DA0_P	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	GND	GND	GND
9	DTCLK_P	DA0_N	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	GND	GND	LVDS_HTB
10	DA2_N	DA1_P	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	A_ONLY	AVDD
11	DA2_P	DA1_N	DA7_N	DA6_N	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	GND	GND		SLEEP
12	DA3_N	GND	DA7_P	DA6_P	AVDD	GND	GND	GND	GND	AVDD	INV_CLK	RESTART		A_ONLY_INV
13	DA3_P	GND	DA5_P	DA5_N	DA9_N	DA9_P	DA11_N	DA11_P	DA13_P	DA13_N	AVDD	GND	A_ONLY_Z	M_NORMAL
14		DA4_P	DA4_N	DA8_N	DA8_P	DA10_N	DA10_P	DA12_N	DA12_P	DACCLK_P	DACCLK_N		GND	

Pin Functions

PIN		TVDE	DESCRIPTION				
NAME	NO.	TYPE	DESCRIPTION				
DACCLK_P	K14	I	External clock, sample clock for the DAC				
DACCLK_N	L14	I	Complementary external clock, sample clock for the DAC				
DLYCLK_P	A7	0	DDR-type data clock to data source				
DLYCLK_N	A6	0	DDR-type data clock to data source complementary signal				
DTCLK_P	A9	I	Input data toggling reference bit				
DTCLK_N	A8	I	Input data toggling reference bit, complementary signal				

Pin Functions (continued)

PIN	PIN FUNCTIONS (CONTINUED)							
NAME	NO.	TYPE	DESCRIPTION					
DA_P[13]	J13	ı	Port A data bit 13 (MSB)					
DA_I [13]	K13	ı	Port A data bit 13 (MSB)					
DA_N[13]	J14	ı	Port A data bit 12					
DA_I [12]	H14	ı	Port A data bit 12 Port A data bit 12 complement					
DA_N[12] DA_P[11]	H13	ı	Port A data bit 11					
DA_N[11]	G13	· I	Port A data bit 11 Port A data bit 11 complement					
DA_N[11]	G14	ı	Port A data bit 10					
DA_N[10]	F14	ı	Port A data bit 10					
DA_P[9]	F13	ı	Port A data bit 9					
DA_N[9]	E13	ı	Port A data bit 9					
DA_P[8]	E14	· I	Port A data bit 8					
DA_N[8]	D14	1	Port A data bit 8					
DA_P[7]	C12	ı	Port A data bit 7					
DA_N[7]	C11	ı	Port A data bit 7					
DA_P[6]	D12	ı	Port A data bit 6					
DA_N[6]	D11	ı	Port A data bit 6 complement					
DA_P[5]	C13	ı	Port A data bit 5					
DA_N[5]	D13	ı	Port A data bit 5					
DA_P[4]	B14	ı	Port A data bit 4					
DA_N[4]	C14	ı	Port A data bit 4 complement					
DA_P[3]	A13	ı	Port A data bit 3					
DA_N[3]	A12	ı	Port A data bit 3 complement					
DA_P[2]	A11	ı	Port A data bit 2					
DA_N[2]	A10	1	Port A data bit 2 complement					
DA_P[1]	B10	ı	Port A data bit 1					
DA_N[1]	B11	I	Port A data bit 1 complement					
DA_P[0]	B8	I	Port A data bit 0 (LSB)					
DA_N[0]	B9	I	Port A data bit 0 complement (LSB)					
DB_P[13]	В7		Port B data bit 13 (MSB)					
DB_N[13]	B6	I	Port B data bit 13 complement (MSB)					
DB_P[12]	A4	I	Port B data bit 12					
DB_N[12]	A5	ı	Port B data bit 12 complement					
DB_P[11]	B4	I	Port B data bit 11					
DB_N[11]	B5	I	Port B data bit 11 complement					
DB_P[10]	A3	I	Port B data bit 10					
DB_N[10]	A2	I	Port B data bit 10 complement					
DB_P[9]	B1	I	Port B data bit 9					
DB_N[9]	C1	I	Port B data bit 9 complement					
DB_P[8]	C2	I	Port B data bit 8					
DB_N[8]	D2	I	Port B data bit 8 complement					
DB_P[7]	E1	I	Port B data bit 7					
DB_N[7]	D1	I	Port B data bit 7 complement					
DB_P[6]	D3	I	Port B data bit 6					
DB_N[6]	D4	I	Port B data bit 6 complement					
DB_P[5]	F2	I	Port B data bit 5					
DB_N[5]	E2	I	Port B data bit 5 complement					

Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated

Pin Functions (continued)

PIN			
NAME	NO.	TYPE	DESCRIPTION
DB_P[4]	J1	ı	Port B data bit 4
DB_N[4]	H1	I	Port B data bit 4 complement
DB_P[3]	G1	ı	Port B data bit 3
DB_N[3]	F1	ı	Port B data bit 3 complement
DB_P[2]	J2	ı	Port B data bit 2
DB_N[2]	K2	ı	Port B data bit 2 complement
DB_P[1]	K1	ı	Port B data bit 1
DB_N[1]	L1	1	Port B data bit 1 complement
DB_P[0]	M1	1	Port B data bit 0 (LSB)
DB_N[0]	N1	ı	Port B data bit 0 complement (LSB)
IOUT_P	M7	0	DAC current output. Full scale when all input bits are set 1.
IOUT_N	M6	0	DAC complementary current output. Full scale when all input bits are 0.
RBIASOUT	P5	0	Rbias resistor current output
RBIASIN	P4	- 1	Rbias resistor sense input
CSCAP	P3	0	Current source bias voltage
CSCAP_IN	P2	ı	Current source bias voltage sense input
REFIO	L3	0	Bandgap reference output
REFIO_IN	L4	1	Bandgap reference sense input
RESTART	M12	I	Resets DLL when high. Low for DLL operation. High for using external setup/hold timing.
LVDS_HTB	P9	I	DLYCLK_P/N control, LVDS mode when high, ht mode when low
INV_CLK	L12	1	Inverts the DLL target clocking relationship when high. Low for normal DLL operation. See <i>DLL Usage</i> .
SLEEP	P11	1	Active-high sleep
NORMAL	P13	ı	High for {a0,b0,a1,b1,a2,b2,} normal mode
A_ONLY	N10	1	High for {a0,a0,a1,a1,a2,a2,} A_only mode
A_ONLY_INV	P12	ı	High for {a0,-a0, a1,-a1,a2,-a2,} A_only_inv mode
A_ONLY_ZS	N13	1	High for {a0,0,a1,0,a2,0,} A_only_zs mode

Pin Assignments (Top View)

							coigiiiioiii	<u> </u>						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α		DB10_N	DB10_P	DB12_P	DB12_N	DLYCLK _N	DLYCLK _P	DTCLK_N	DTCLK_P	DA2_N	DA2_P	DA3_N	DA3_P	
В	DB9_P	GND	GND	DB11_P	DB11_N	DB13_N	DB13_P	DA0_P	DA0_N	DA1_P	DA1_N	GND	GND	DA4_P
С	DB9_N	DB8_P	AVDD	AVDD	AVDD	GND	GND	GND	GND	AVDD	DA7_N	DA7_P	DA5_P	DA4_N
D	DB7_N	DB8_N	DB6_P	DB6_N	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	DA6_N	DA6_P	DA5_N	DA8_N
Е	DB7_P	DB5_N	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	DA9_N	DA8_P
F	DB3_N	DB5_P	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	GND	DA9_P	DA10_N
G	DB3_P	AVDD	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	GND	DA11_N	DA10_P
Н	DB4_N	AVDD	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	GND	DA11_P	DA12_N
J	DB4_P	DB2_P	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	GND	DA13_P	DA12_P
K	DB1_P	DB2_N	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	DA13_N	Dacclk_P
L	DB1_N	AVDD	REFIO	REFIO_IN	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	GND	Inv_clk	AVDD	Dacclk_N
M	DB0_P	GND	AVDD	AVDD	AVDD	IOUT_N	IOUT_P	GND	GND	AVDD	GND	Restart	GND	
N	DB0_N	GND	GND	AVDD	GND	GND	GND	GND	GND	A_only			A_only_z	GND
Р		CSCap _IN	CSCap	RBIAS_IN	RBIAS _OUT		GND	GND	LVDS _htb	AVDD	Sleep	A_only _inv	M _Normal	

Pin Assignments (Bottom View)

	/ = / = /													
	Α	В	С	D	E	F	G	н	J	К	L	М	N	Р
1		DB9_P	DB9_N	DB7_N	DB7_P	DB3_N	DB3_P	DB4_N	DB4_P	DB1_P	DB1_N	DB0_P	DB0_N	
2	DB10_N	GND	DB8_P	DB8_N	DB5_N	DB5_P	AVDD	AVDD	DB2_P	DB2_N	AVDD	GND	GND	CSCap _IN
3	DB10_P	GND	AVDD	DB6_P	AVDD	GND	GND	GND	GND	AVDD	REFIO	AVDD	GND	CSCap
4	DB12_P	DB11_P	AVDD	DB6_N	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	REFIO_IN	AVDD	AVDD	RBIAS_IN
5	DB12_N	DB11_N	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	GND	RBIAS _OUT
6	DLYCLK _N	DB13_N	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	IOUT_N	GND	
7	DLYCLK _P	DB13_P	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	IOUT_P	GND	GND
8	DTCLK_N	DA0_P	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	GND	GND	GND
9	DTCLK_P	DA0_N	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD	GND	GND	LVDS_htb
10	DA2_N	DA1_P	AVDD	AVDD	GND	GND	GND	GND	GND	GND	AVDD	AVDD	A_only	AVDD
11	DA2_P	DA1_N	DA7_N	DA6_N	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	GND	GND		Sleep
12	DA3_N	GND	DA7_P	DA6_P	AVDD	GND	GND	GND	GND	AVDD	Inv_clk	Restart		A_only _inv
13	DA3_P	GND	DA5_P	DA5_N	DA9_N	DA9_P	DA11_N	DA11_P	DA13_P	DA13_N	AVDD	GND	A_only_z	M _Normal
1 4		DA4_P	DA4_N	DA8_N	DA8_P	DA10_N	DA10_P	DA12_N	DA12_P	Dacclk_P	Dacclk_N		GND	

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage	AVDD to GND		5	V
DA_P[130], DA_N[130], DB_P[130], DB_N[130]	Measured with respect to GND	-0.3	$AV_{DD} + 0.3$	V
NORMAL, A_ONLY, A_ONLY_INV, A_ONLY_ZS	Measured with respect to GND	-0.3	$AV_{DD} + 0.3$	V
DTCLK_P, DTCLK_N, DACCLK_P, DACCLK_N	Measured with respect to GND	-0.3	AV _{DD} + 0.3	V
LVDS_HTB, INV_CLK, RESTART	Measured with respect to GND	-0.3	AV _{DD} + 0.3	V
IOUT_P, IOUT_N	Measured with respect to GND	AVDD - 0.5	AV _{DD} + 1.5	V
CSCAP_IN, REFIO_IN, RBIAS_IN	Measured with respect to GND	-0.3	AV _{DD} + 0.3	V
Peak input current (any input)	,		20	mA
Maximum junction temperature		150	°C	
Lead temperature 1.6 mm (1/16 inch) from the case for		260	°C	

⁽¹⁾ Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT	
T _{stg}	Storage tempe	erature range	-65	150	°C	
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-250	250	\/	
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-250	250	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
GENERAL PA	ARAMETERS	•		٠	
	Full-scale output current			30	mA
V _{REFIO}	Input voltage range	1.14	1.2	1.26	V
AV_{DD}	Analog supply voltage	3	3.3	3.6	V
f_{DAC}	Output update rate			2.4	GSPS
CMOS INTER	FACE (SLEEP, RESTART, INV_CLK, NORMAL, A_ONLY, A_ONLY_INV	, A_ONLY_ZS)		·	
V _{IH}	High-level input voltage	2	3		V
V _{IL}	Low-level input voltage	0	0	0.8	V
DIFFERENTIA	AL DATA INTERFACE (DA_P[13:0], DA_N[13:0], DB_P[13:0], DB_N[13:0)], DTCLK_P, D	TCLK_N)		
V_{ITH}	Differential input threshold	-100		100	mV
V _{ICOM}	Input common mode	0.6		1.4	V
CLOCK INPU	TS (DACCLK_P, DACCLK_N)				
DACCLK_P - DACCLK_N	Clock differential input voltage	200		1000	mV
	Clock duty cycle	40%		60%	
VCLKCM	Clock common mode	1		1.4	V

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

	THERMAL METRIC	TEST CONDITIONS	TYP	UNIT
R_{\thetaJA}	Junction-to-free-air thermal resistance	Non-thermally enhanced JEDEC standard PCB, per JESD-51, 51-3	41.3	°C/W
R_{\thetaJC}	Junction-to-case thermal resistance	MIL-STD-883 test method 1012	3.8	· C/vv

7.5 DC Electrical Characteristics

 $T_{C.MIN} = -55^{\circ}C$ to $T_{C.MAX} = 125^{\circ}C$, typical values at 25°C, AVDD = 3 V to 3.6 V, loutFS = 20 mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Resolution		14			bits
DC AC	CURACY					
INL	Integral nonlinearity	$T_{C,MIN}$ to $T_{C,MAX}$, $f_{DAC} = 640$ kHz,	-7.5	±1.5	7.5	LCD
DNL	Differential nonlinearity	$f_{\text{OUT}} = 10 \text{ kHz}$	-0.98	±0.8	1.75	LSB
	Monotonocity		14			bits
ANAL	OG OUTPUT					•
	Offset error	Mid-code offset	-0.45	±0.09	0.45	%FSR
	Gain error	With external reference	-6.0	±1.6	6	%FSR
	Gain error	With internal reference	-6.0	±1.6	6	%FSR
	Output compliance range	$I_{O(FS)} = 20$ mA, $AV_{DD} = 3.15$ to 3.45 V	AVDD - 0.5		AVDD + 0.5	V
	Output resistance			300 ⁽²⁾		kΩ
	Output capacitance	IOUT_P and IOUT_N single ended		13.7 ⁽²⁾		pF
REFE	RENCE OUTPUT					
	Reference voltage		1.14	1.2	1.26	V
	Reference output current			100		nA
REFE	RENCE INPUT					
	Input resistance			1 (2)		ΜΩ
	Small-signal bandwidth			1.4		MHz
	Input capacitance			3.2 ⁽²⁾		pF
TEMP	ERATURE COEFFICIENTS					
	Offset drift			75		ppm of FSR/°C
	Gain drift	With external reference		75		ppm of FSR/°C
	Gain drift	With internal reference		75		ppm of FSR/°C
	Reference voltage drift			35		ppm/°C
POWE	R SUPPLY					
I _{AVDD}	Analog supply current	$f_{\rm DAC}$ = 2.4 GHz, NORMAL input mode		560	650	mA
I _{AVDD}	Sleep mode, AVDD supply current	Sleep mode (SLEEP pin high)		150	180	mA
Р	Power dissipation	$f_{\rm DAC}$ = 2.4 GHz, NORMAL input mode		1800	2350	mW
PSRR	Power-supply rejection ratio	AV _{DD} = 3.15 to 3.45 V		0.4	1.3	%FSR/V

⁽¹⁾ Typicals are characterization values at 25°C and AVDD = 3.3 V. These parameters are characterized, but not production tested.

⁽²⁾ Specified by design.

7.6 AC Electrical Characteristics

 $T_{C.MIN} = -55$ °C to $T_{C.MAX} = 125$ °C, typical values at 25°C, AVDD = 3 to 3.6 V, loutFS = 20 mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
ANALO	G OUTPUT					
t _{s(DAC)}	Output setting time to 0.1%	Mid-scale transition		3.5		ns
t _{pd}	Output propagation delay			7 DACCLK + 1.5 ns		
$t_{r(IOUT)}$	Output rise time, 10% to 90%			280		ps
$t_{f(IOUT)}$	Output fall time, 90% to 10%			280		ps
AC PEF	RFORMANCE					
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 100 MHz, Dual-port mode, 0 dBFS	46	55		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 200 MHz, Dual-port mode, 0 dBFS		51		
SFDR	Spurious-free dynamic range	$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 300 MHz, Dual-port mode, 0 dBFS	31	36		dBc
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, 0 dBFS	35	43		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, –6 dBFS		47		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 100 MHz, Dual-port mode, 0 dBFS	58	60		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 200 MHz, Dual-port mode, 0 dBFS		60		
SNR	Signal-to-noise ratio	$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 300 MHz, Dual-port mode, 0 dBFS	56	62		dBc
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, 0 dBFS	51	58		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, –6 dBFS		52		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 100 MHz, Dual-port mode, 0 dBFS	45	52		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 200 MHz, Dual-port mode, 0 dBFS		50		
THD	Total harmonic distortion	$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 300 MHz, Dual-port mode, 0 dBFS	31	36		dBc
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, 0 dBFS	35	46		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 500 MHz, Dual-port mode, –6 dBFS		44		
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 99 MHz and 102 MHz, Each tone at –6 dBFS, Dual-port mode.		70		dBc
IMPo	Third-order two-tone	$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 200 MHz and 202 MHz, Each tone at –6 dBFS, Dual-port mode.		68		dBc
IMD3	intermodulation	$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 253 MHz and 257 MHz, Each tone at –6 dBFS, Dual-port mode.	47	57		dBc
		$f_{\rm DAC}$ = 2.4 GSPS, $f_{\rm OUT}$ = 299 MHz and 302 MHz, Each tone at –6 dBFS, Dual-port mode.	35	55		dBc
IMD	Four-tone intermodulation	f _{DAC} = 2.4 GSPS, f _{OUT} = 298 MHz, 299 MHz, 300 MHz, and 301 MHz, Each tone at −12 dBFS, Dual-port mode.	47	62.5		dBc

⁽¹⁾ Typicals are characterization values at 25°C and AVDD = 3.3 V. These parameters are characterized, but not production tested.

Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated

7.7 Digital Electrical Characteristics

 $T_{C,MIN} = -55$ °C to $T_{C,MAX} = 125$ °C, typical values at 25°C, AVDD = 3 to 3.6 V, loutFS = 20 mA (unless otherwise noted)

O,MIIIV	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT		
CMOS INTE								
I _{IH}	High-level input current			0.2	10	μΑ		
I _{IL}	Low-level input current		-10	-0.2		μΑ		
	Input capacitance			2.5 ⁽²⁾		pF		
DIFFERENTI	DIFFERENTIAL DATA INTERFACE (DA_P[13:0], DA_N[13:0], DB_P[13:0], DB_N[13:0], DTCLK_P, DTCLK_N)							
Z _T	Internal termination impedance		80	100	125	Ω		
C _i	Input capacitance			2.6 ⁽²⁾		pF		

⁽¹⁾ Typicals are characterization values at 25°C and AVDD = 3.3 V. These parameters are characterized, but not production tested.

7.8 Timing Requirements

			MIN	TYP	MAX	UNIT			
DIFFERENTIAL DATA INTERFACE (DA_P[13:0], DA_N[13:0], DB_P[13:0], DB_N[13:0] EXTERNAL TIMING WITH DLL IN RESTART) (See Figure 2)									
t _{setup}	Data setup to DLYCLK ⁽¹⁾	RESTART = 1, DLYCLK 20-pF load See Figure 2	4.75			nS			
t _{hold}	Data hold to DLYCLK (1)	RESTART = 1, DLYCLK 20-pF load See Figure 2	-3.5			nS			
DLL (S	ee Figure 15)								
NegD	DLL min negative delay	RESTART = 0	150			ps			
PosD	DLL min positive delay	RESTART = 0	600			ps			
t _{valid}	CLK/4 internal setup + hold width			160		ps			
Fdac		RESTART = 0	1		2.4	GHz			

(1) Tested using SNR as pass/fail criteria.

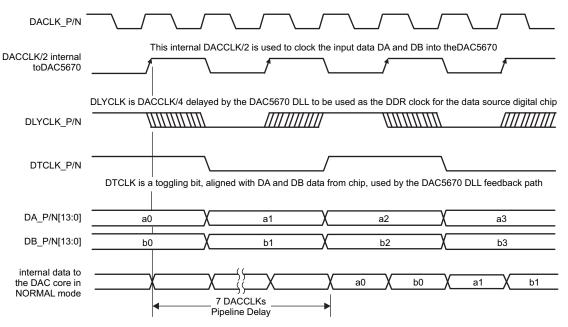


Figure 1. DLL Input Loop Functional Timing

Copyright © 2009–2014, Texas Instruments Incorporated

⁽²⁾ Specified by design.

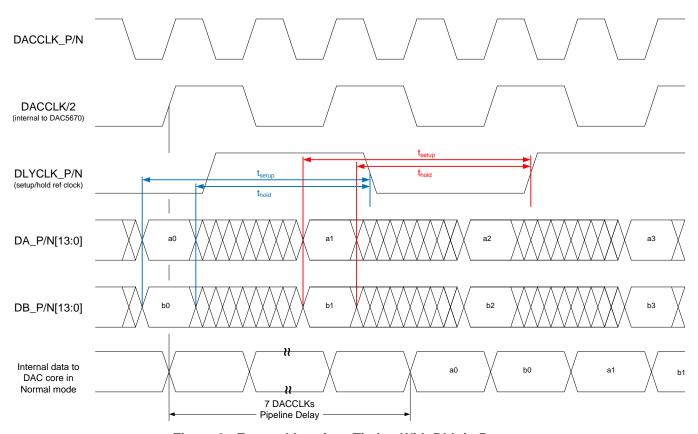
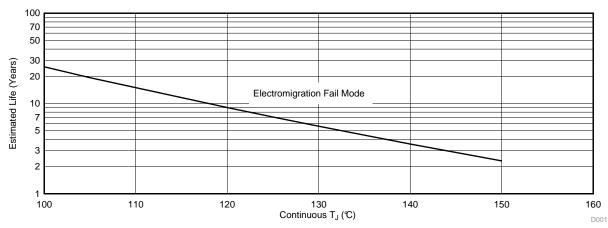
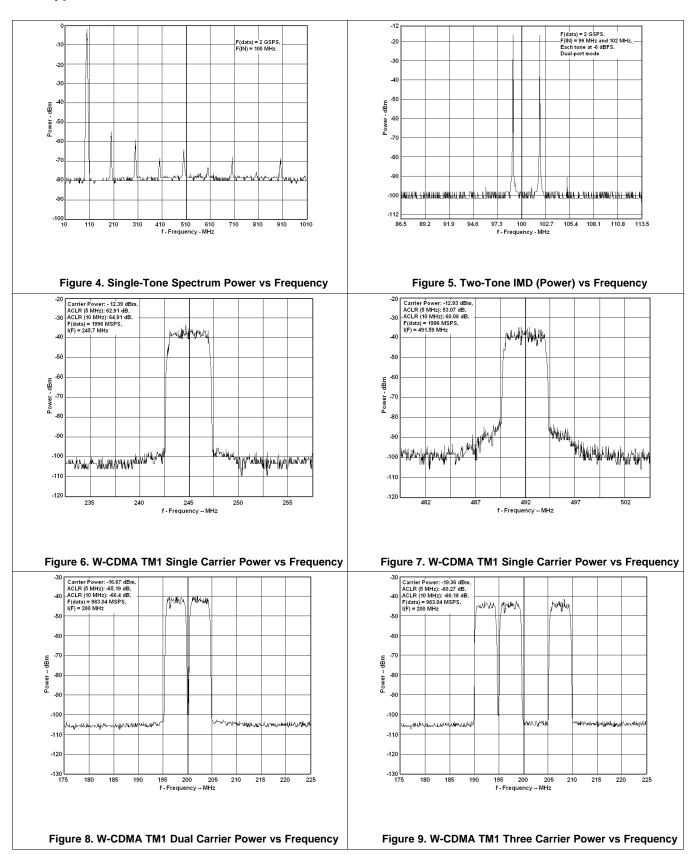



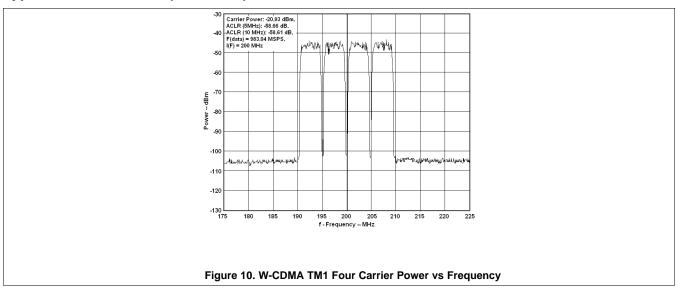
Figure 2. External Interface Timing With DLL in Restart

- A. See data sheet for absolute maximum and minimum recommended operating conditions.
- B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).


Figure 3. DAC5670-SP – 192/GEM Package Operating Life Derating Chart

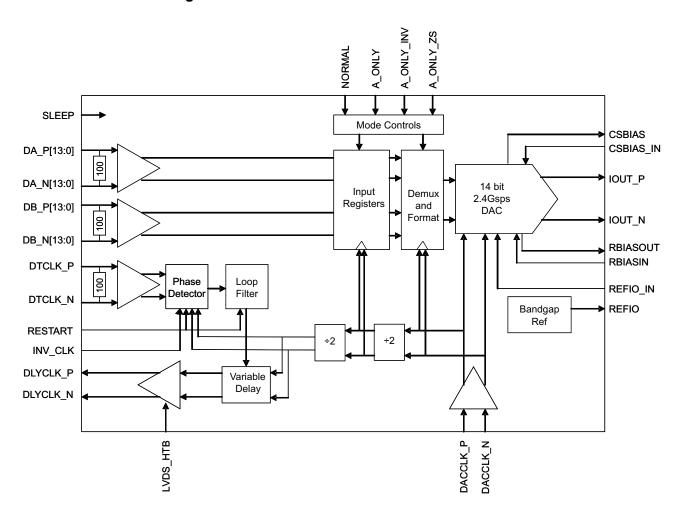
Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated



7.9 Typical Characteristics

Typical Characteristics (continued)


8 Detailed Description

8.1 Overview

Figure 26 shows a simplified block diagram of the current steering DAC5670. The DAC5670 consists of a segmented array of NPN-transistor current sinks, capable of delivering a full-scale output current up to 30 mA. Differential current switches direct the current of each current sink to either one of the complementary output nodes IOUT_P or IOUT_N. The complementary current output enables differential operation, canceling out common-mode noise sources (digital feed-through, on-chip, and PCB noise), dc offsets, even-order distortion components, and doubling signal output power.

The full-scale output current is set using an external resistor (R_{BIAS}) in combination with an on-chip bandgap voltage reference source (1.2 V) and control amplifier. The current (I_{BIAS}) through resistor R_{BIAS} is mirrored internally to provide a full-scale output current equal to 32x I_{BIAS} . The full-scale current is adjustable from 30 mA down to 5 mA by using the appropriate bias resistor value.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Digital Inputs

The DAC5670 differential digital inputs are compatible with LVDS and HyperTransport voltage levels.

Copyright © 2009–2014, Texas Instruments Incorporated

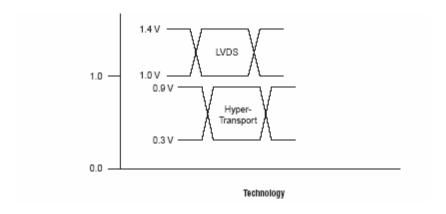


Figure 11. Digital Input Voltage Options

The DAC5670 uses low-voltage differential signaling (LVDS and HyperTransport) for the bus input interface. The LVDS and HyperTransport input modes feature a low differential voltage swing. The differential characteristic of LVDS and HyperTransport modes allow for high-speed data transmission with low electromagnetic interference (EMI) levels. Figure 12 shows the equivalent complementary digital input interface for the DAC5670, valid for pins DA_P[13:0], DA_N[13:0], DB_P[13:0], and DB_N[13:0].

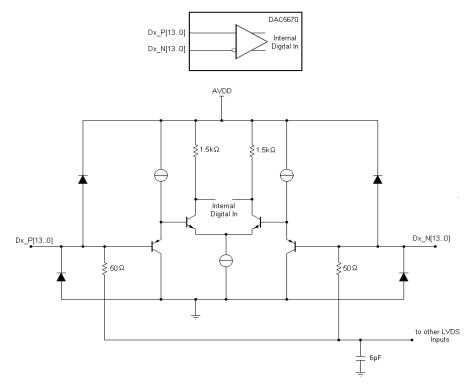


Figure 12.

Figure 13 shows a schematic of the equivalent CMOS/TTL-compatible digital inputs of the DAC5670, valid for the following pins: RESTART, LVDS_HTB, INV_CLK, SLEEP, NORMAL, A_ONLY, A_ONLY_INV, and A_ONLY_ZS.

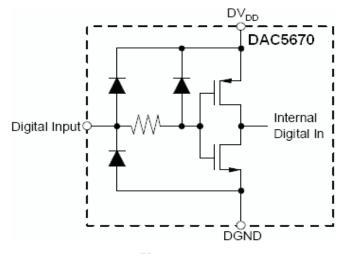


Figure 13.

8.3.2 DLL Usage

The DAC5670 is clocked at the DAC sample rate. Each input port runs at a maximum of 1.2 GSPS. The DAC5670 provides an output clock (DLYCLK) at one-half the input port data rate (DACCLK/4), and monitors an additional reference bit (DTCLK). DTCLK is used as a feedback clock to adjust interface timing. To accomplish this, the DAC5670 implements a DLL to help manage the timing interface from external data source. As with all DLLs, there are limitations on the capability of the DLL with respect to the delay chain length, implementation of the phase detector, and the bandwidth of the control loop. The DAC5670 implements a quadrature-based phase detector. This scheme allows for the DLL to provide maximum setup or hold delay margins when quadrature can be reached. Quadrature is reached when the internal CLK / 4 is 90° out of phase with DTCLK. Additionally, as the frequency of operation decreases, the delay line's fixed length limits its ability to change the delay path enough to reach quadrature (see Figure 15). Note that the delay line has asymmetric attributes. The NegD range is smaller than the PosD range. From its nominal (restart) position, it can delay more than it can subtract.

Figure 15 represents the behavior of the phase detector and the delay line with respect to initial positions of the rising edge of DTCLK. There are four distinct quadrants that define the behavior. Each quadrant represents the period of the DDR clock rate (600 MHz in the 2.4 GSPS case) divided by 4. The ideal location has the initial delays of DTCLK (and hence data bits) in quadrant 1. The stable lock point of DLL is at T / 4, between Q1 and Q2. If DTCLK's initial delay is in quadrants 3 or 4, the INV_CLK pin can be asserted to improve the ability of DLL to obtain quadrature. This assertion moves the stable quadrature point to the center of 3T / 4 vs T / 4 as shown in Figure 15. Essentially, the zones that add delay become zones that subtract delay and vice-versa. The clock phase of CLK / 4 would also invert.

In cases where it is not appropriate to use the DLL to manage the timing interface, it is possible to use fixed setup and hold values for DA and DB signals relative to the generated DLYCLK output when the DLL is held in restart. This is accomplished by asserting RESTART to logic high and using the timing input conditions for external timing interface with DLL in restart in the *DLL Usage*. When using external setup and hold timing, the user does not need to provide DTCLK. DTCLK should be biased to valid LVDS levels in that case (see Figure 2).

The setup/hold values are non-traditional, as they represent the setup/hold of an input to a generated clock (DLYCLK). Additionally, the setup/hold numbers represent delays that may be longer than the DACCLK or DACCLK/2 periods. To calculate the setup/hold values to the nearest adjacent DLYCLK transistion, the user must subtract multiples of DACLCK/2 periods until the setup is less than a DACCLK/2 period. The same amount can be subtracted from the hold time. These new setup/hold values will be frequency dependent.

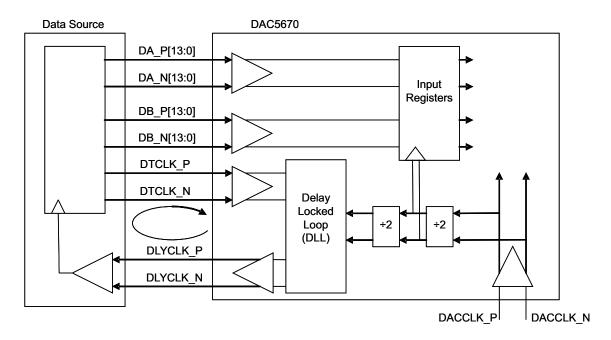


Figure 14. DLL Input Loop Simplified Block Diagram

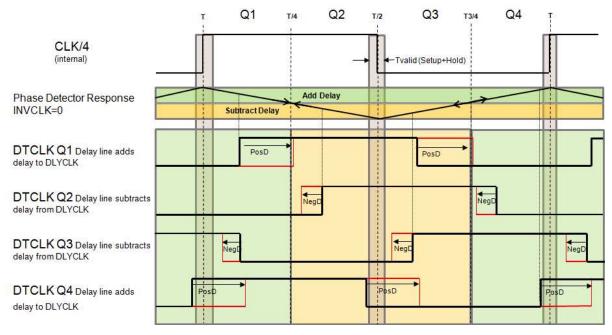


Figure 15. DLL Phase Detector Behavior

8.3.3 Clock Input

The DAC5670 features differential, LVPECL-compatible clock inputs (DACCLK_P, DACCLK_N). Figure 16 shows the equivalent schematic of the clock input buffer. The internal biasing resistors set the input common-mode voltage to AVDD / 2, while the input resistance is typically 1 k Ω . A variety of clock sources can be accoupled to the device, including a sine wave source (see Figure 17).

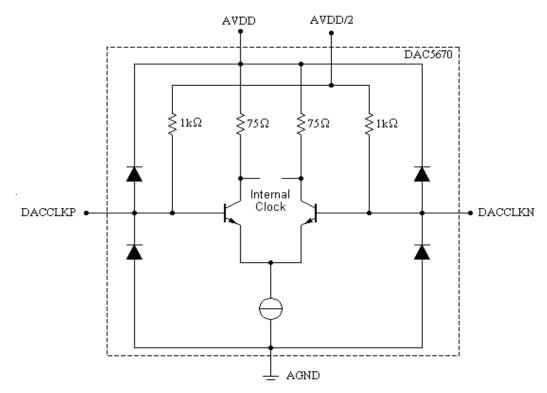


Figure 16. Clock Equivalent Input

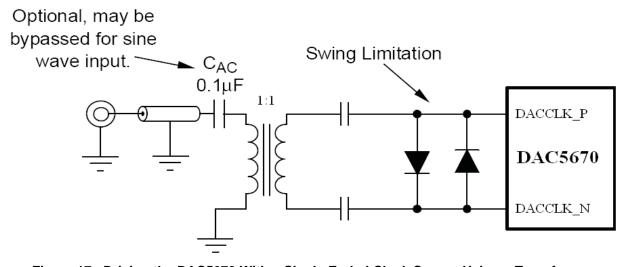


Figure 17. Driving the DAC5670 With a Single-Ended Clock Source Using a Transformer

To obtain the best ac performance, the DAC5670 clock input should be driven with a differential LVPECL or sine wave source as shown in Figure 18 and Figure 19. In this case, set the potential of VTT to the termination voltage required by the driver along with the proper termination resistors (R_T). The DAC5670 clock input can also be driven single ended for slower clock rates using TTL/CMOS levels (see Figure 20).

Copyright © 2009–2014, Texas Instruments Incorporated

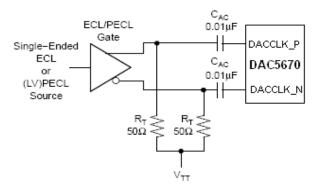


Figure 18. Driving the DAC5670 With a Single-Ended ECL/PECL Clock Source

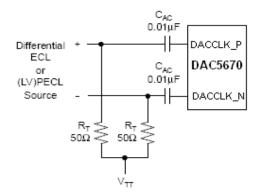


Figure 19. Driving the DAC5670 With a Differential ECL/PECL Clock Source

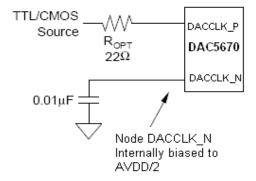


Figure 20. Driving the DAC5670 With a Single-Ended TTL/CMOS Clock Source

8.3.4 DAC Transfer Function

The DAC5670 has a current sink output. The current flow through IOUT_P and IOUT_N is controlled by Dx_P[13:0] and Dx_N[13:0]. For ease of use, this data sheet denotes D[13:0] as the logical bit equivalent of Dx_P[13:0] and its complement Dx_N[13:0]. The DAC5670 supports straight binary coding with D13 as the MSB and D0 as the LSB. Full-scale current flows through IOUTP when all D[13:0] inputs are set high and through IOUTN when all D[13:0] inputs are set low. The relationship between IOUT_P and IOUT_N can be expressed as Equation 1:

$$IOUT_N = IO_{(FS)} - IOUT_P$$
 (1)

 $IO_{(FS)}$ is the full-scale output current sink (5 to 30 mA). Because the output stage is a current sink, the current can only flow from AVDD through the load resistors R_L into the IOUT_N and IOUT_P pins.

The output current flow in each pin driving a resistive load can be expressed as shown in Figure 21, Equation 2, and Equation 3.

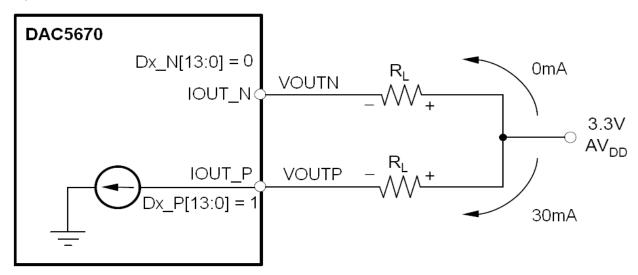


Figure 21. Relationship Between D[13:0], lout_n and lout_p

IOUT_N =
$$(IOUT_{(FS)} \times (16383 - CODE)) / 16384$$
 (2)
IOUT_P = $(IOUT_{(FS)} \times CODE) / 16384$

where

CODE is the decimal representation of the DAC input word

(3)

This would translate into single-ended voltages at IOUT_N and IOUT_P, as shown in Equation 4 and Equation 5:

$$VOUTN = AVDD - IOUT_N \times R_L$$
 (4)

$$VOUTP = AVDD - IOUT_P \times R_L$$
 (5)

For example, assuming that D[13:0] = 1 and that R_L is 50 Ω , the differential voltage between pins IOUT_N and IOUT_P can be expressed as shown in Equation 6 through Equation 8 where $IO_{(FS)} = 20$ mA:

VOUTN =
$$3.3 \text{ V} - 0 \text{ mA} \times 50 \Omega = 3.3 \text{ V}$$
 (6)

VOUTP =
$$3.3 \text{ V} - 20 \text{ mA} \times 50 \Omega = 2.3 \text{ V}$$
 (7)

$$VDIFF = VOUTN - VOUTP = 1 V$$
 (8)

If D[13:0] = 0, then IOUT_P = 0 mA, IOUT_N = 20 mA, and the differential voltage VDIFF = -1 V.

The output currents and voltages in IOUT_N and IOUT_P are complementary. The voltage, when measured differentially, is doubled compared to measuring each output individually. Take care not to exceed the compliance voltages at the IOUT_N and IOUT_P pins in order to keep signal distortion low.

8.3.5 Reference Operation

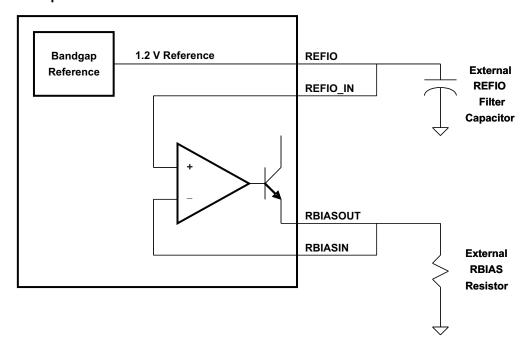


Figure 22. Reference Circuit

The DAC5670 comprises a bandgap reference and control amplifier for biasing the full-scale output current. The full-scale output current is set by applying an external resistor R_{BIAS} to pins RBIASOUT and RBIASIN. The bias current I_{BIAS} through resistor R_{BIAS} is defined by the on-chip bandgap reference voltage and control amplifier. The full-scale output current equals $32\times$ this bias current. The full-scale output current IOUT_{FS} can thus be expressed as:

The bandgap reference voltage delivers an accurate voltage of 1.2 V. Connect an external REFIO filter capacitor of 0.1 µF externally to the terminals REFIO and REFIO_IN for compensation.

The full-scale output current can be adjusted from 30 to 5 mA by varying external resistor R_{BIAS}.

8.3.6 Analog Current Outputs

 $IOUT_{FS} = 32 \times I_{BIAS} = 32 \times V_{REFIO} / R_{BIAS}$

Figure 23 is a simplified schematic of the current sink array output with corresponding switches. Differential NPN switches direct the current of each individual NPN current sink to either the positive output node, IOUT_P, or its complementary negative output node, IOUT_N. The input data presented at the DA_P[13:0], DA_N[13:0], DB_P[13:0], and DB_N[13:0] is decoded to control the sw_p(N) and sw_n(N) current switches.

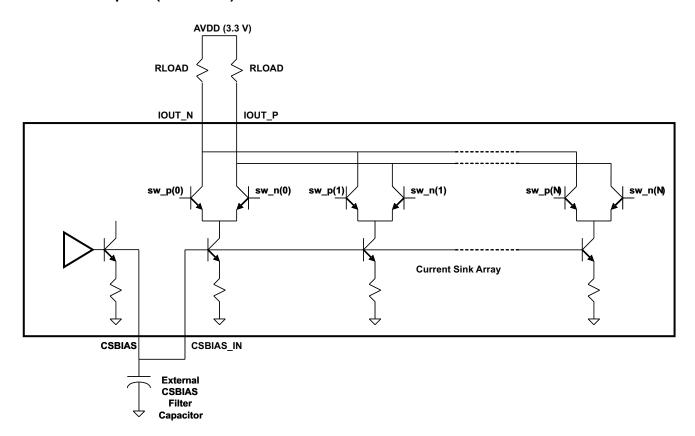


Figure 23. Current Sink Array

The external output resistors, R_{LOAD}, are connected to the positive supply, AVDD.

The DAC5670 can easily be configured to drive a doubly-terminated $50-\Omega$ cable using a properly selected transformer. Figure 24 and Figure 25 show the 1:1 and 4:1 impedance ratio configuration, respectively. These configurations provide maximum rejection of common-mode noise sources and even-order distortion components, thereby doubling the power of the DAC to the output. The center tap on the primary side of the transformer is terminated to AVDD, enabling a dc current flow for both IOUT_N and IOUT_P.

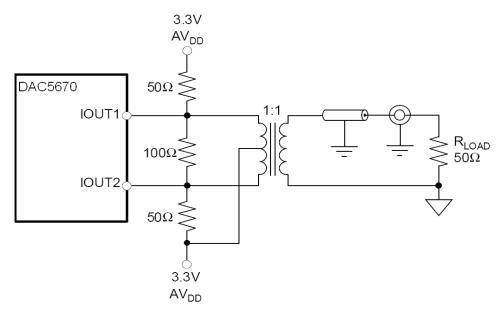


Figure 24. 1:1 Impedance Ratio

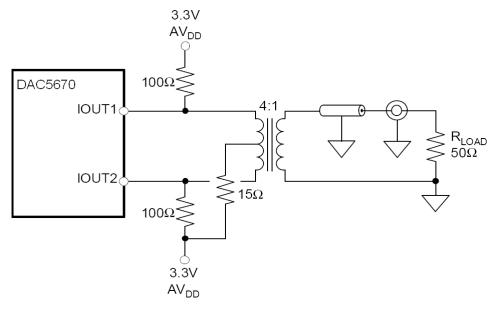


Figure 25. 4:1 Impedance Ratio

8.3.7 Sleep Mode

When the SLEEP pin is asserted (high), the DAC5670 enters a lower-power mode.

8.4 Device Functional Modes

8.4.1 Input Format

The DAC5670 has four input modes selected by the four mutually-exclusive configuration pins: NORMAL, A_ONLY, A_ONLY_INV, and A_ONLY_ZS. Table 1 lists the input modes, input sample rates, maximum DAC sample rate (CLK input), and resulting DAC output sequence for each configuration. For all configurations, the DLYCLK_P/N outputs and DTCLK_P/N inputs are DACCLK_P/N frequency divided by four.

Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated

Device Functional Modes (continued)

Table 1. DAC5670 Input Formats

NORMAL	A_ONLY	A_ONLY_INV	A_ONLY_ZS	FinA/Fdac	FinB/Fdac	f _{DAC} MAX (MHz)	DLYCLK_P/NAND, DTCLK_P/N FREQ (MHz)	DAC OUTPUT SEQUENCE
1	0	0	0	1/2	1/2	2400	Fdac/4	A0, B0, A1, B1, A2, B2,
0	1	0	0	1/2	Off	2400	Fdac/4	A0, A0, A1, A1, A2, A2,
0	0	1	0	1/2	Off	2400	Fdac/4	A0, -A0, A1, -A1, A2, -A2,
0	0	0	1	1/2	Off	2400	Fdac/4	A0, 0, A1, 0, A2, 0,

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DAC5670 is a 14-bit DAC with max input rate of 2.4 GSPS. The DAC5670 is also suitable to operate at lower sample rates without the use of the DLL for input interface timing.

9.2 Typical Application

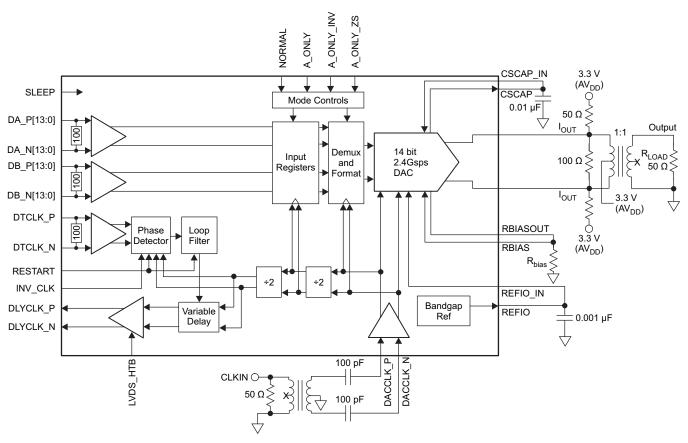


Figure 26. Current Steering DAC5670

9.2.1 Design Requirements

This example uses DACCLK rate of 2 GHz with signal output at 300 MHz.

9.2.2 Detailed Design Procedure

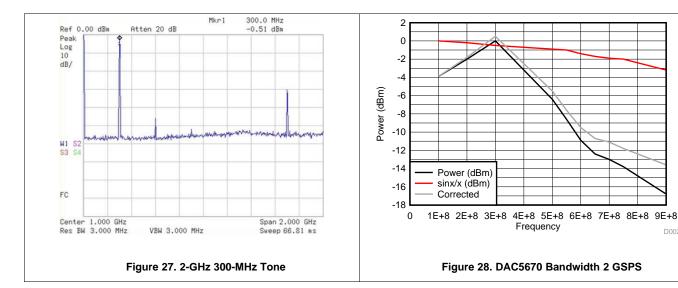
This example is outputting a 300-MHz tone with 2-GHz sample rate. Data is applied to both A and B ports at 1-GHz dual data rate. Full scale IOUT current set to 19.2 mA.

$$IOUT_{ES} = 19.2 \text{ mA} = 32 \times I_{BIAS} 32 \times V_{REFIO} / R_{BIAS} = 32 \times 1.2 \text{ V} / 2 \text{ k}\Omega$$
 (10)

Device settings:

- RESTART low
- LVDS_HTB (pattern generator source dependent)

Submit Documentation Feedback


Copyright © 2009-2014, Texas Instruments Incorporated

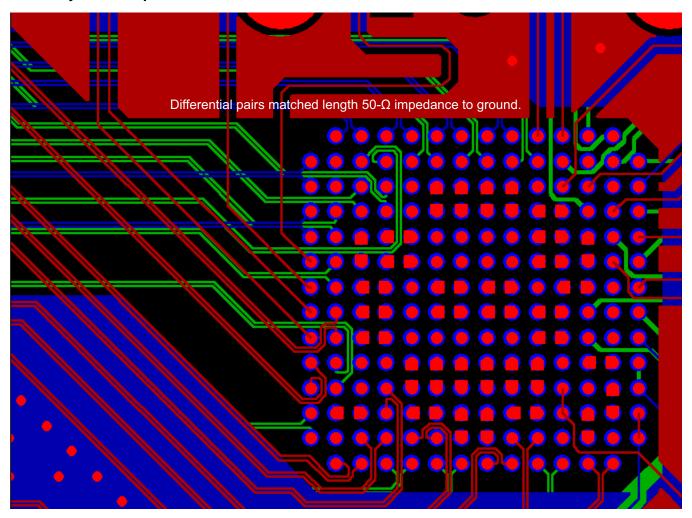
Typical Application (continued)

- INV_CLK as necessary for DLL lock
- SLEEP low
- NORMAL high
- A_ONLY low
- A_ONLY_INV low
- A_ONLY_ZS low
- DA_P[0:13], DA_N[0:13], DB_P[0:13], DB_N[0:13] sourced from pattern generator generating 300-MHz tone with 65536 sample depth
- RBIAS 2 kΩ to GND

9.2.3 Application Curves

Product Folder Links: DAC5670-SP

10 Power Supply Recommendations


The DAC5670 uses a single 3.3-V power supply simplifying design requirements. The power supply should be filtered from any other system noise that may be present. The filtering should pay particular attention to frequencies of interest for output.

11 Layout

11.1 Layout Guidelines

- DAC output termination should be placed as close as possible to outputs.
- · Keep routing for RBIAS short.
- Decoupling capacitors should be placed as close as possible to supply pins.
- Digital differential inputs must be 50 Ω to ground loosely coupled, or 100- Ω differential tightly coupled.
- · Digital differential inputs must be length matched.

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

12.1.1.1 Definitions of Specifications and Terminology

- **Differential Nonlinearity (DNL)** Defined as the variation in analog output associated with an ideal 1 LSB change in the digital input code.
- **Gain Drift** Defined as the maximum change in gain, in terms of ppm of full-scale range (FSR) per °C, from the value at 25°C to values over the full operating temperature range.
- **Gain Error** Defined as the percentage error in the ratio between the measured full-scale output current and the value of the ideal full-scale output (32 x V_{REFIO} / R_{BIAS}). A V_{REFIO} of 1.2 V is used to measure the gain error with an external reference voltage applied. With an internal reference, this error includes the deviation of V_{REFIO} (internal bandgap reference voltage) from the typical value of 1.2 V.
- **Integral Nonlinearity (INL)** Defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.
- **Intermodulation Distortion (IMD3, IMD)** The two-tone IMD3 or four-tone IMD is defined as the ratio (in dBc) of the worst third-order (or higher) intermodulation distortion product of either fundamental output tone.
- **Offset Drift** Defined as the maximum change in dc offset, in terms of ppm of full-scale range (FSR) per °C, from the value at 25°C to values over the full operating temperature range.
- Offset Error Defined as the percentage error in the ratio of the differential output current (IOUT_P IOUT_N) to half of the full-scale output current for input code 8192.
- Output Compliance Range Defined as the minimum and maximum allowable voltage at the output of the current-output DAC. Exceeding this limit may result in reduced reliability of the device or adversely affecting distortion performance.
- **Power Supply Rejection Ratio (PSSR)** Defined as the percentage error in the ratio of the delta I_{OUT} and delta supply voltage normalized with respect to the ideal I_{OUT} current.
- **Reference Voltage Drift** Defined as the maximum change of the reference voltage in ppm per °C from the value at ambient (25°C) to values over the full operating temperature range.
- **Spurious Free Dynamic Range (SFDR)** Defined as the difference (in dBc) between the peak amplitude of the output signal and the peak spurious signal.
- **Signal-to-Noise Ratio (SNR)** Defined as the ratio of the RMS value of the fundamental output signal to the RMS sum of all other spectral components below the Nyquist frequency, including noise, but excluding the first six harmonics and dc.
- **Total Harmonic Distortion (THD)** Defined as the ratio of the RMS sum of the first six harmonic components to the RMS value of the fundamental output signal.

12.2 Trademarks

HyperTransport is a trademark of HyperTransport Technology Consortium. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
5962-0724701VXA	Active	Production	CBGA (GEM) 192	1 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 0724701VXA DAC5670MGEM-V
DAC5670MGEM/EM	Active	Production	CBGA (GEM) 192	1 TUBE	No	SNPB	N/A for Pkg Type	25 to 25	DAC5670MGEM/EM EVAL ONLY

⁽¹⁾ Status: For more details on status, see our product life cycle.

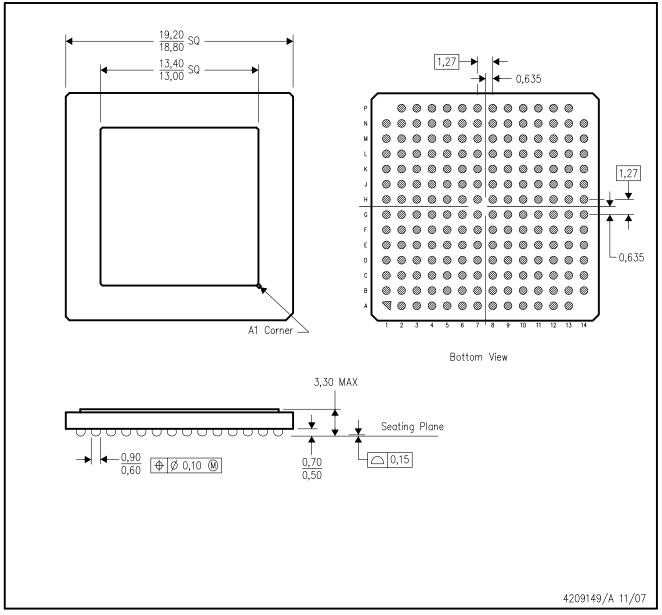
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

GEM (S-CBGA-N192)

CERAMIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Metal Lid Hermetic Package.
- D. Falls within JEDEC MO-156

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025