CSD87355Q5D ZHCSEU6A - MARCH 2016-REVISED SEPTEMBER 2017 # CSD87355Q5D 同步降压 NexFET™电源块 ## 特性 - 半桥电源块 - 25A 电流时系统效率达 92.5% - 工作电流高达 45A - 高频工作(高达 1.5MHz) - 高密度 SON 5mm x 6mm 封装 - 针对 5V 栅极驱动进行了优化 - 低开关损耗 - 超低电感封装 - 符合 RoHS 标准 - 无卤素 - 无铅引脚镀层 ## 应用范围 - 同步降压转换器 - 高频 应用 - 高电流、低占空比 应用 - 多相位同步降压转换器 - 负载点 (POL) 直流 直流转换器 - IMVP、VRM 和 VRD 电感式触控不锈钢键盘参考 设计 ## 3 说明 CSD87355Q5D NexFET™电源块是面向同步降压 应 用 的优化设计方案,能够以 5mm × 6mm 的小巧外形 提供高电流、高效率以及高频率性能。该产品针对 5V 栅极驱动 应用进行了优化,在与外部控制器/驱动器的 任一 5V 栅极驱动配套使用时,可提供一套灵活的解决 方案来实现高密度电源。 #### 顶视图 #### 订购信息(1) | 器件 | 介质 | 数量 | 封装 | 出货 | |--------------|---------|------|---------------------|--------| | CSD87355Q5D | 13 英寸卷带 | 2500 | 5mm x 6mm 小外形 | 32 111 | | CSD87355Q5DT | 7 英寸卷带 | 250 | 尺寸无引线 (SON)
塑料封装 | 卷带 | (1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。 | | 目 | 录 | | | |---|--|---|-----------------------------|----| | 1 | 特性 1 | | 6.1 Application Information | 10 | | 2 | 应用范围 1 | | 6.2 Typical Application | | | 3 | 说明1 | 7 | Layout | 1 | | 4 | 修订历史记录 2 | | 7.1 Layout Guidelines | 1 | | 5 | Specifications | | 7.2 Layout Example | 10 | | • | 5.1 Absolute Maximum Ratings | 8 | 器件和文档支持 | 17 | | | 5.2 Handling Ratings | | 8.1 社区资源 | | | | 5.3 Recommended Operating Conditions | | 8.2 商标 | 17 | | | 5.4 Thermal Information | | 8.3 静电放电警告 | 1 | | | 5.5 Power Block Performance | | 8.4 Glossary | | | | 5.6 Electrical Characteristics 4 | 9 | 机械、封装和可订购信息 | 18 | | | 5.7 Typical Power Block Device Characteristics 5 | | 9.1 Q5D 封装尺寸 | | | | 5.8 Typical Power Block MOSFET Characteristics 7 | | 9.2 焊盘布局建议 | | | 6 | Application and Implementation 10 | | 9.3 模板建议 | 19 | # 4 修订历史记录 | Cł | nanges from Original (March 2016) to Revision A | Pag | 36 | |----|--|-----|----| | • | Added footnote for Z _{DS(ON)} in the <i>Electrical Characteristics</i> table. | | 2 | | • | 已删除 Q5D 卷带封装信息 部分 | 1 | 19 | # **Specifications** #### 5.1 Absolute Maximum Ratings $T_A = 25$ °C (unless otherwise noted)⁽¹⁾ | | | MIN | MAX | UNIT | |---------------------------------------|--|------|---------|------| | Voltage | V _{IN} to P _{GND} | -0.8 | 30 | V | | | T _G to T _{GR} | -8 | 10 | V | | | B _G to P _{GND} | -8 | 10 | V | | Pulsed current rating, I _D | M ⁽²⁾ | | 120 | Α | | Power dissipation, P _D | | | 12 | W | | A., | Sync FET, I _D = 89 A, L = 0.1 mH | | 396 | mJ | | Avalanche energy E _{AS} | Control FET, I _D = 50 A, L = 0.1 mH | | 125 | mJ | | Operating junction temp | erature, T _J | -55 | -55 150 | | Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. ## 5.2 Handling Ratings | | | MIN | MAX | UNIT | |------------------|---------------------------|-------------|-----|------| | T _{stg} | Storage temperature range | - 55 | 150 | °C | # 5.3 Recommended Operating Conditions $T_A = 25^{\circ}$ (unless otherwise noted) | | | MIN | MAX | UNIT | |-----------------|---|-----|------|------| | V _{GS} | Gate drive voltage | 4.5 | 10 | V | | V_{IN} | Input supply voltage | | 27 | ٧ | | $f_{\sf SW}$ | Switching frequency $C_{BST} = 0.1 \mu F$ (min) | 200 | 1500 | kHz | | | Operating current | | 45 | Α | | T_{J} | Operating temperature | | 125 | °C | #### 5.4 Thermal Information $T_{\Delta} = 25^{\circ}C$ (unless otherwise stated) | - A — - | | | | | | |-----------------|---|-----|-----|-----|------| | | THERMAL METRIC | MIN | TYP | MAX | UNIT | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance (min Cu) ⁽¹⁾⁽²⁾ | | | 102 | °C/W | | | Junction-to-ambient thermal resistance (max Cu) (1)(2) | | | 50 | °C/W | | $R_{\theta JC}$ | Junction-to-case thermal resistance (top of package) (2) | | | 20 | °C/W | | | Junction-to-case thermal resistance (P _{GND} pin) ⁽²⁾ | | | 2 | °C/W | #### 5.5 Power Block Performance T_A = 25° (unless otherwise noted) | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|---|-----|-----|-----|------| | Power loss, P _{LOSS} ⁽¹⁾ | $\begin{aligned} & V_{IN} = 12 \; V, \; V_{GS} = 5 \; V, \; V_{OUT} = 1.3 \; V, \\ & I_{OUT} = 25 \; A, \; f_{SW} = 500 \; kHz, \\ & L_{OUT} = 0.29 \; \mu H, \; T_{J} = 25 ^{\circ} C \end{aligned}$ | | 2.8 | | W | | V _{IN} quiescent current, I _{QVIN} | T_G to $T_{GR} = 0 \text{ V}$, B_G to $P_{GND} = 0 \text{ V}$ | | 10 | | μΑ | Measurement made with six 10 μF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across V_{IN} to P_{GND} pins and using a high current 5 V driver IC. Pulse duration \leq 50 μ S. Duty cycle \leq 0.01. Device mounted on FR4 material with 1 inch² (6.45 cm²) Cu. $R_{\theta JC}$ is determined with the device mounted on a 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu pad on a 1.5 inches × 1.5 inches $(3.81~\text{cm} \times 3.81~\text{cm})$, 0.06 inch (1.52 mm) thick FR4 board. $R_{\theta JC}$ is specified by design while $R_{\theta JA}$ is determined by the user's board #### 5.6 Electrical Characteristics $T_A = 25^{\circ}C$ (unless otherwise stated) | PARAMETER | | TEST COMPLETIONS | Q1 C | Q1 CONTROL FET | | | Q2 SYNC FET | | | |------------------------------------|---|--|------|----------------|------|------|-------------|------|------| | | | TEST CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | STATIC CH | ARACTERISTICS | | | | | | | • | | | BV _{DSS} | Drain-to-source voltage | $V_{GS} = 0 \text{ V}, I_{DS} = 250 \mu\text{A}$ | 30 | | | 30 | | | V | | I _{DSS} | Drain-to-source leakage current | V _{GS} = 0 V, V _{DS} = 24 V | | | 1 | | | 1 | μА | | I _{GSS} | Gate-to-source leakage current | V _{DS} = 0 V,
V _{GS} = +10 / -8 V | | | 100 | | | 100 | nA | | V _{GS(th)} | Gate-to-source threshold voltage | $V_{DS} = V_{GS}, I_{DS} = 250 \mu A$ | 1.00 | | 1.90 | 0.75 | | 1.20 | V | | Z _{DS(ON)} ⁽¹⁾ | Drain-to-source ON impedance $V_{IN} = 12 \text{ V}, V_{GS} = 5 \text{ V}, V_{OUT} = 1.3 \text{ V}, I_{OUT} = 25 \text{ A}, f_{SW} = 500 \text{ kHz}, L_{OUT} = 0.29 \mu\text{H}$ | | | | 0.9 | | mΩ | | | | g _{fs} | Transconductance | $V_{DS} = 3 \text{ V}, I_{DS} = 20 \text{ A}$ | | 90 | | | 151 | | S | | DYNAMIC (| CHARACTERISTICS | | | | | | | | | | C _{ISS} | Input capacitance | | | 1430 | 1860 | | 3570 | 4640 | pF | | Coss | Output capacitance | $V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V},$
f = 1 MHz | | 716 | 930 | | 1730 | 2240 | pF | | C _{RSS} | Reverse transfer capacitance | - J - 1 WII 12 | | 25 | 32 | | 52 | 67 | pF | | R _G | Series gate resistance | | | 0.6 | 1.2 | | 0.7 | 1.4 | Ω | | Q _g | Gate charge total (4.5 V) | | | 10.5 | 13.7 | | 24.3 | 31.5 | nC | | Q _{gd} | Gate charge – gate-to-drain | V _{DS} = 15 V, | | 2.3 | | | 4.1 | | nC | | Q _{gs} | Gate charge – gate-to-source | I _{DS} = 20 A | | 3.2 | | | 5.6 | | nC | | Q _{g(th)} | Gate charge at V _{th} | | | 1.7 | | | 2.8 | | nC | | Q _{OSS} | Output charge | V _{DS} = 15 V, V _{GS} = 0 V | | 18 | | | 40 | | nC | | t _{d(on)} | Turn on delay time | | | 8 | | | 10 | | ns | | t _r | Rise time | $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ | | 18 | | | 14 | | ns | | t _{d(off)} | Turn off delay time | $I_{DS} = 20 \text{ A}, R_G = 2 \Omega$ | | 13 | | | 27 | | ns | | t _f | Fall time | | | 3 | | | 6 | | ns | | DIODE CHA | RACTERISTICS | | • | | | | | | | | V_{SD} | Diode forward voltage | I _{DS} = 20 A, V _{GS} = 0 V | | 0.8 | 1.0 | | 0.8 | 1.0 | V | | Q _{rr} | Reverse recovery charge | V _{dd} = 17 V, I _F = 20 A, | | 43 | | | 82 | | nC | | t _{rr} | Reverse recovery time | di/dt = 300 A/μs | | 23.8 | | | 32.3 | | ns | (1) Equivalent based on application testing. See *Application and Implementation* section for details. Max $R_{\theta JA} = 50^{\circ} C/W$ when mounted on 1 inch² (6.45 cm²) of 2 oz. (0.071-mm thick) Cu. Max $R_{\theta JA} = 102^{\circ} C/W$ when mounted on minimum pad area of 2 oz. (0.071-mm thick) Cu. # 5.7 Typical Power Block Device Characteristics T_J = 125°C, unless stated otherwise. The Typical Power Block System Characteristic curves $\ 3$, and $\ 4$ are based on measurements made on a PCB design with dimensions of 4" (W) \times 3.5" (L) \times 0.062" (H) and 6 copper layers of 1-oz. copper thickness. See *Application and Implementation* for detailed explanation. # Typical Power Block Device Characteristics (接下页) 图 7. Normalized Power Loss vs. Output Voltage T_J = 125°C, unless stated otherwise. The Typical Power Block System Characteristic curves $\ 3$, and $\ 4$ are based on measurements made on a PCB design with dimensions of 4" (W) \times 3.5" (L) \times 0.062" (H) and 6 copper layers of 1-oz. copper thickness. See *Application and Implementation* for detailed explanation. 图 8. Normalized Power Loss vs Output Inductance # 5.8 Typical Power Block MOSFET Characteristics $T_A = 25$ °C, unless stated otherwise. # TEXAS INSTRUMENTS # Typical Power Block MOSFET Characteristics (接下页) $T_A = 25$ °C, unless stated otherwise. # Typical Power Block MOSFET Characteristics (接下页) $T_A = 25$ °C, unless stated otherwise. # 6 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 6.1 Application Information The CSD87355Q5D NexFET power block is an optimized design for synchronous buck applications using 5-V gate drive. The Control FET and Sync FET silicon are parametrically tuned to yield the lowest power loss and highest system efficiency. As a result, a new rating method is needed which is tailored towards a more systems centric environment. System level performance curves such as Power Loss, Safe Operating Area, and normalized graphs allow engineers to predict the product performance in the actual application. # 6.1.1 Equivalent System Performance Many of today's high performance computing systems require low power consumption in an effort to reduce system operating temperatures and improve overall system efficiency. This has created a major emphasis on improving the conversion efficiency of today's Synchronous Buck Topology. In particular, there has been an emphasis in improving the performance of the critical Power Semiconductor in the Power Stage of this application (see 27). As such, optimization of the power semiconductors in these applications, needs to go beyond simply reducing $R_{\text{DS(ON)}}$. # Application Information (接下页) The CSD87355Q5D is part of TI's Power Block product family which is a highly optimized product for use in a synchronous buck topology requiring high current, high efficiency, and high frequency. It incorporates TI's latest generation silicon which has been optimized for switching performance, as well as minimizing losses associated with Q_{GD} , Q_{GS} , and Q_{RR} . Furthermore, TI's patented packaging technology has minimized losses by nearly eliminating parasitic elements between the Control FET and Sync FET connections (see 28). A key challenge solved by TI's patented packaging technology is the system level impact of Common Source Inductance (CSI). CSI greatly impedes the switching characteristics of any MOSFET which in turn increases switching losses and reduces system efficiency. As a result, the effects of CSI need to be considered during the MOSFET selection process. In addition, standard MOSFET switching loss equations used to predict system efficiency need to be modified in order to account for the effects of CSI. Further details behind the effects of CSI and modification of switching loss equations are outlined in TI's Application Note SLPA009. The combination of TI's latest generation silicon and optimized packaging technology has created a benchmarking solution that outperforms industry standard MOSFET chipsets of similar $R_{DS(ON)}$ and MOSFET chipsets with lower $R_{DS(ON)}$. 29 and 30 compare the efficiency and power loss performance of the CSD87355Q5D versus industry standard MOSFET chipsets commonly used in this type of application. This comparison purely focuses on the efficiency and generated loss of the power semiconductors only. The performance of CSD87355Q5D clearly highlights the importance of considering the Effective AC On-Impedance $(Z_{DS(ON)})$ during the MOSFET selection process of any new design. Simply normalizing to traditional MOSFET $R_{DS(ON)}$ specifications is not an indicator of the actual in-circuit performance when using TI's Power Block technology. # TEXAS INSTRUMENTS # Application Information (接下页) 表 1 compares the traditional DC measured $R_{DS(ON)}$ of CSD87355Q5D versus its $Z_{DS(ON)}$. This comparison takes into account the improved efficiency associated with TI's patented packaging technology. As such, when comparing TI's Power Block products to individually packaged discrete MOSFETs or dual MOSFETs in a standard package, the in-circuit switching performance of the solution must be considered. In this example, individually packaged discrete MOSFETs or dual MOSFETs in a standard package would need to have DC measured $R_{DS(ON)}$ values that are equivalent to CSD87355Q5D's $Z_{DS(ON)}$ value in order to have the same efficiency performance at full load. Mid to light-load efficiency will still be lower with individually packaged discrete MOSFETs or dual MOSFETs in a standard package. 表 1. Comparison of R_{DS(ON)} vs Z_{DS(ON)} | PARAMETER | HS | | LS | | | |---|-----|-----|-----|-----|------| | PARAMETER | TYP | MAX | TYP | MAX | UNIT | | Effective AC On-Impedance Z _{DS(ON)} (V _{GS} = 5 V) | 3.9 | - | 0.9 | = | mΩ | | DC Measured R _{DS(ON)} (V _{GS} = 4.5 V) | 3.9 | 4.7 | 1.5 | 1.8 | mΩ | #### 6.1.2 Power Loss Curves MOSFET centric parameters such as $R_{DS(ON)}$ and Q_{gd} are needed to estimate the loss generated by the devices. In an effort to simplify the design process for engineers, Texas Instruments has provided measured power loss performance curves. 图 1 plots the power loss of the CSD87355Q5D as a function of load current. This curve is measured by configuring and running the CSD87355Q5D as it would be in the final application (see 图 31). The measured power loss is the CSD87355Q5D loss and consists of both input conversion loss and gate drive loss. 公式 1 is used to generate the power loss curve. $$(V_{IN} \times I_{IN}) + (V_{DD} \times I_{DD}) - (V_{SW AVG} \times I_{OUT}) = Power Loss$$ (1) #### 6.1.3 Safe Operating Curves (SOA) The SOA curves in the CSD87355Q5D data sheet provides guidance on the temperature boundaries within an operating system by incorporating the thermal resistance and system power loss. 3 to 4 outline the temperature and airflow conditions required for a given load current. The area under the curve dictates the safe operating area. All the curves are based on measurements made on a PCB design with dimensions of 4 (W) \times 3.5° (L) \times 0.062° (T) and 6 copper layers of 1-oz. copper thickness. #### 6.1.4 Normalized Curves The normalized curves in the CSD87355Q5D data sheet provides guidance on the Power Loss and SOA adjustments based on their application specific needs. These curves show how the power loss and SOA boundaries will adjust for a given set of system conditions. The primary Y-axis is the normalized change in power loss and the secondary Y-axis is the change is system temperature required in order to comply with the SOA curve. The change in power loss is a multiplier for the Power Loss curve and the change in temperature is subtracted from the SOA curve. #### 6.2 Typical Application 版权 © 2016-2017, Texas Instruments Incorporated # Typical Application (接下页) #### 6.2.1 Design Example: Calculating Power Loss and SOA The user can estimate product loss and SOA boundaries by arithmetic means (see *Operating Conditions*). Though the Power Loss and SOA curves in this data sheet are taken for a specific set of test conditions, the following procedure will outline the steps the user should take to predict product performance for any set of system conditions. #### 6.2.2 Operating Conditions - Output Current = 25 A - Input Voltage = 7 V - Output Voltage = 1.4 V - Switching Frequency = 800 kHz - Inductor = 0.2 μH #### 6.2.2.1 Calculating Power Loss - Power Loss at 25 A = 3.62 W (₹ 1) - Normalized Power Loss for input voltage ≈ 0.99 (图 6) - Normalized Power Loss for output voltage ≈ 1.02 (图 7) - Normalized Power Loss for switching frequency ≈ 1.06 (图 5) - Normalized Power Loss for output inductor ≈ 1.03 (图 8) - Final calculated Power Loss = 3.62 W x 0.99 x 1.02 x 1.06 x 1.03 ≈ 3.99 W #### 6.2.2.2 Calculating SOA Adjustments - SOA adjustment for input voltage ≈ -0.24°C (图 6) - SOA adjustment for output voltage ≈ 0.63°C (图 7) - SOA adjustment for switching frequency ≈ 2.12°C (图 5) - SOA adjustment for output inductor ≈ 0.91°C (图 8) - Final calculated SOA adjustment = -0.24 + 0.63 + 2.12 + 0.91 ≈ 3.42C In the previous design example, the estimated power loss of the CSD87355Q5D would increase to 4 W. In addition, the maximum allowable board and/or ambient temperature would have to decrease by 3.4°C. ☑ 32 graphically shows how the SOA curve would be adjusted accordingly. - 1. Start by drawing a horizontal line from the application current to the SOA curve. - 2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature. - 3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value. In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient temperature of 3.4°C. In the event the adjustment value is a negative number, subtracting the negative number would yield an increase in allowable board/ambient temperature. 图 32. Power Block SOA # 7 Layout # 7.1 Layout Guidelines There are two key system-level parameters that can be addressed with a proper PCB design: electrical and thermal performance. Properly optimizing the PCB layout will yield maximum performance in both areas. The following sections provide a brief description on how to address each parameter. #### 7.1.1 Electrical Performance The Power Block has the ability to switch voltages at rates greater than 10 kV/µs. Take special care with the PCB layout design and placement of the input capacitors, Driver IC, and output inductor. - The placement of the input capacitors relative to the Power Block's VIN and PGND pins should have the highest priority during the component placement routine. It is critical to minimize these node lengths. As such, ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see ☑ 33). The example in ☒ 33 uses 6 x 10-µF ceramic capacitors (TDK Part # C3216X5R1C106KT or equivalent). Notice there are ceramic capacitors on both sides of the board with an appropriate amount of vias interconnecting both layers. In terms of priority of placement next to the Power Block, C5, C7, C19, and C8 should follow in order - The Driver IC should be placed relatively close to the Power Block Gate pins. T_G and B_G should connect to the outputs of the Driver IC. The T_{GR} pin serves as the return path of the high-side gate drive circuitry and should be connected to the Phase pin of the IC (sometimes called LX, LL, SW, PH, etc.). The bootstrap capacitor for the Driver IC will also connect to this pin. - The switching node of the output inductor should be placed relatively close to the Power Block VSW pins. Minimizing the node length between these two components will reduce the PCB conduction losses and actually reduce the switching noise level. - In the event the switch node waveform exhibits ringing that reaches undesirable levels, the use of a Boost Resistor or RC snubber can be an effective way to reduce the peak ring level. The recommended Boost Resistor value will range between 1 Ω to 4.7 Ω depending on the output characteristics of Driver IC used in conjunction with the Power Block. The RC snubber values can range from 0.5 Ω to 2.2 Ω for the R and 330 pF to 2200 pF for the C. Refer to TI App Note SLUP100 for more details on how to properly tune the RC snubber values. The RC snubber should be placed as close as possible to the Vsw node and PGND see \mathbb{Z} 33. (1) #### 7.1.2 Thermal Considerations The Power Block has the ability to use the GND planes as the primary thermal path. As such, the use of thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount of solder attach that will wick down the via barrel: - Intentionally space out the vias from each other to avoid a cluster of holes in a given area. - Use the smallest drill size allowed in your design. The example in 33 uses vias with a 10 mil drill hole and a 16 mil capture pad. - Tent the opposite side of the via with solder-mask. In the end, the number and drill size of the thermal vias should align with the end user's PCB design rules and manufacturing capabilities. Keong W. Kam, David Pommerenke, "EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis", University of Missouri – Rolla **Output Capacitors** # 7.2 Layout Example 图 33. Recommended PCB Layout (Top View) #### 8 器件和文档支持 #### 8.1 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点:请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 #### 8.2 商标 NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. #### 8.3 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。 ### 8.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. # 9 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。 # 9.1 Q5D 封装尺寸 | | 亭 |
米 | 英寸 | | | |-----|--------------|-------|-------|-------|--| | DIM | 最小值 | 最大值 | 最小值 | 最大值 | | | а | 1.40 | 1.5 | 0.055 | 0.059 | | | b | 0.360 | 0.460 | 0.014 | 0.018 | | | С | 0.150 | 0.250 | 0.006 | 0.010 | | | c1 | 0.150 | 0.250 | 0.006 | 0.010 | | | d | 1.630 | 1.730 | 0.064 | 0.068 | | | d1 | 0.280 | 0.380 | 0.011 | 0.015 | | | d2 | 0.200 | 0.300 | 0.008 | 0.012 | | | d3 | 13 0.291 0.3 | | 0.012 | 0.015 | | | D1 | 4.900 | 5.100 | 0.193 | 0.201 | | | D2 | 4.269 | 4.369 | 0.168 | 0.172 | | | Е | 4.900 | 5.100 | 0.193 | 0.201 | | | E1 | 5.900 | 6.100 | 0.232 | 0.240 | | | E2 | 3.106 | 3.206 | 0.122 | 0.126 | | | е | 1.27 🞚 | 典型值 | 0.0 |)50 | | | f | 0.396 | 0.496 | 0.016 | 0.020 | | | L | 0.510 | 0.710 | 0.020 | 0.028 | | | θ | 0.00 | _ | _ | _ | | | K | 0.8 | 112 | 0.032 | | | ## 9.2 焊盘布局建议 NOTE: 尺寸单位为 mm (英寸)。 # 9.3 模板建议 NOTE: 尺寸单位为 mm (英寸)。 如需了解针对 PCB 设计的建议电路布局,请参阅应用手册 SLPA005 - 《通过 PCB 布局技巧来减少振铃》。 www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|--------|---------------|---------------------|-----------------------|-------------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (5) | (4) | (5) | | (6) | | CSD87355Q5D | Active | Production | LSON-CLIP (DQY) 8 | 2500 LARGE T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | | CSD87355Q5D.B | Active | Production | LSON-CLIP (DQY) 8 | 2500 LARGE T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | | CSD87355Q5DG4 | Active | Production | LSON-CLIP (DQY) 8 | 2500 LARGE T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | | CSD87355Q5DG4.B | Active | Production | LSON-CLIP (DQY) 8 | 2500 LARGE T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | | CSD87355Q5DT | Active | Production | LSON-CLIP (DQY) 8 | 250 SMALL T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | | CSD87355Q5DT.B | Active | Production | LSON-CLIP (DQY) 8 | 250 SMALL T&R | ROHS Exempt | NIPDAU | Level-1-260C-UNLIM | -55 to 150 | 87355D | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CSD87355Q5D | LSON-
CLIP | DQY | 8 | 2500 | 330.0 | 12.4 | 5.3 | 6.3 | 1.8 | 8.0 | 12.0 | Q2 | | CSD87355Q5DG4 | LSON-
CLIP | DQY | 8 | 2500 | 330.0 | 12.4 | 5.3 | 6.3 | 1.8 | 8.0 | 12.0 | Q2 | | CSD87355Q5DT | LSON-
CLIP | DQY | 8 | 250 | 180.0 | 12.4 | 5.3 | 6.3 | 1.8 | 8.0 | 12.0 | Q2 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | CSD87355Q5D | LSON-CLIP | DQY | 8 | 2500 | 346.0 | 346.0 | 33.0 | | CSD87355Q5DG4 | LSON-CLIP | DQY | 8 | 2500 | 346.0 | 346.0 | 33.0 | | CSD87355Q5DT | LSON-CLIP | DQY | 8 | 250 | 182.0 | 182.0 | 20.0 | # 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司