CC2640R2F-Q1 适用于汽车应用的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU ## 1 特性 - 符合汽车应用要求 - 具有符合 AEC-Q100 标准的下列特性: - 器件温度等级 2: -40°C 至 +105°C 环境工作 温度范围 - 器件 HBM ESD 分类等级 2 - 器件 CDM ESD 分类等级 C3 - 微控制器 - 功能强大的 Arm® Cortex®-M3 - EEMBC CoreMark® 评分:142 - 高达 48MHz 的时钟速度 - 275KB 非易失性存储器,包括 128KB 系统内可 - 高达 28KB 的系统 SRAM, 其中 20KB 为超低泄 漏 SRAM - 8KB SRAM 用于缓存或系统 RAM - 2 引脚 cJTAG 和 JTAG 调试 - 支持无线 (OTA) 升级 - 超低功耗传感器控制器 - 可独立于系统其余部分自主运行 - 16 位架构 - 2KB 超低泄漏 SRAM 用于代码和数据 - 高效代码大小架构,在 ROM 中装载驱动程序、低 功耗蓝牙®控制器和引导加载程序,让更多闪存供 应用使用 - 符合 RoHS 标准的汽车级封装 - 具有可润湿侧翼的 7mm × 7mm RGZ VQFN48 - 外设 - 31 个 GPIO, 所有数字外设引脚均可连接至任何 - 四个通用计时器模块 (8个16位计时器或4个32位计时器,均采 用 PWM) - 12 位 ADC、200ksps、8 通道模拟多路复用器 - 持续时间比较器 - 超低功耗模拟比较器 - 可编程电流源 - UART - 2 个同步串行接口 (SSI) (SPI、MICROWIRE 和 TI) - I2C \ I2S - 实时时钟 (RTC) - AES-128 安全模块 - 真随机数发生器 (TRNG) - 支持八个电容感测按钮 - 集成温度传感器 #### • 外部系统 - 片上内部直流/直流转换器 - 极少的外部元件 - 与 SimpleLink™ CC2590 和 CC2592 范围扩展 器无缝集成 - 低功耗 - 宽电源电压范围: 1.8V 至 3.8V - 有源模式 RX: 6.1mA - 有源模式 TX (0dBm): 7.0mA - 有源模式 TX (+5dBm): 9.3mA - 有源模式 MCU: 61μA/MHz - 有源模式 MCU: 48.5CoreMark/mA - 有源模式传感器控制器: $0.4\text{mA} + 8.2\mu\text{A/MHz}$ - 待机:1.3 μ A (RTC 运行, RAM/CPU 保持) - 关断:150nA(发生外部事件时唤醒) - RF 部分 - 与低功耗蓝牙 (BLE) 4.2 和 5 规范兼容的 2.4GHz 射频收发器 - 出色的接收器灵敏度(对于低功耗蓝牙 1Mbps 为 - 97dBm)、可选择性和阻断性能 - 高达 +5dBm 的可编程输出功率 - 对于低功耗蓝牙 1Mbps,链路预算为 102dB - 适用于符合各项全球射频规范的系统 - ETSI EN 300 328 和 EN 300 440 (欧洲) - FCC CFR47 第 15 部分(美国) - ARIB STD-T66 (日本) - 开发工具和软件 - 全功能开发套件 - Sensor Controller Studio - SmartRF™ Studio - IAR Embedded Workbench® for Arm® - Code Composer Studio™ 集成式开发环境 (IDE) - Code Composer Studio™ Cloud IDE #### 2 应用 - 汽车 - 汽车门禁和安全系统 - 无钥匙进入及启动 (PEPS) 系统 - 手机即钥匙 (PaaK) - 遥控免钥匙进入 (RKE) - 工业 - 工厂自动化 - 资产跟踪和管理 - 人机界面 (HMI) - 门禁 ## 3 说明 SimpleLink™ 低功耗 *Bluetooth* ® CC2640R2F-Q1 器件是一款符合 AEC-Q100 标准的无线微控制器 (MCU),面向低功耗 *Bluetooth* ® 4.2 和 *Bluetooth* ® 5 汽车应用,例如无钥匙进入/启动系统 (PEPS)、遥控免钥匙进入(RKE)、汽车共享、泊车引导、电缆更换和智能手机连接。 CC2640R2F-Q1 器件属于德州仪器 (TI)™ 的 SimpleLink™ MCU 平台系列。该平台包含 Wi-Fi®、低功耗 *Bluetooth*®、Sub-1GHz、以太网、Zigbee®、Thread 和主机 MCU。所有这些器件均共用一个简单易用的通用开发环境,其中包含单个核心软件开发套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink™ 平台,用户可以将产品系列中的任何器件组合添加到自己的设计中,从而在设计要求变更时实现 100% 代码重用。更多信息,请访问 http://www.ti.com/wireless-connectivity/simplelink-solutions/overview/overview.html。 CC2640R2F-Q1 的有源射频和 MCU 电流消耗非常低,并且具有灵活的低功耗模式,可提供出色的电池寿命,使连接到汽车电池的节点依靠小型纽扣电池实现远距离操作并具有低功耗。出色的接收器灵敏度和可编程输出功率,为严苛的汽车射频环境提供其所需的出色射频性能。 CC2640R2F-Q1 无线 MCU 包含一个作为主应用处理器以 48MHz 速率运行的 32 位 Arm® Cortex®-M3 处理器,并包含嵌入于 ROM 中的低功耗 *Bluetooth*® 4.2 控制器库和主机库。此架构可改善整体系统性能和功耗,并释放大量闪存以供应用使用。 此外,该器件符合 AEC-Q100 标准,达到 2 级温度范围 (-40° C 至 +105°),并采用 7mm × 7mm 的具有可润湿侧翼的 VQFN 封装。可润湿侧翼有助于降低生产线成本,并通过光学检查焊点来提高可靠性。 可从 Tl.com 免费获取低功耗蓝牙软件栈。 #### 器件信息(1) | 器件型号 | 封装 | 封装
尺寸 | | | | |------------------|--------------------------------------|-----------------|--|--|--| | CC2640R2FTWRGZQ1 | 具有可湿性侧面的超薄型四方扁平无引线
(VQFN) 48 引脚封装 | 7.00mm × 7.00mm | | | | Product Folder Links: CC2640R2F-Q1 (1) 如需了解更多信息,请参阅机械、封装和可订购信息。 ## 4 功能方框图 方框图 显示了 CC2640R2F-Q1 器件的方框图。 方框图 ## **Table of Contents** | 1 | 特性 | 1 | |---|---|----------| | 2 | 2 应用 | 1 | | 3 | 3 说明 | <u>2</u> | | 4 | 1 功能方框图 | 3 | | | Device Comparison | | | | 5.1 Related Products | | | 6 | S Pin Configuration and Functions | 7 | | | 6.1 Pin Diagram—RGZ Package | 7 | | | 6.2 Signal Descriptions—RGZ Package | 8 | | | 6.3 Wettable Flanks | 9 | | 7 | 7 Specifications | | | | 7.1 Absolute Maximum Ratings | 10 | | | 7.2 ESD Ratings | | | | 7.3 Recommended Operating Conditions | | | | 7.4 Power Consumption Summary | 11 | | | 7.5 General Characteristics | 11 | | | 7.6 1Mbps GFSK (Bluetooth Low Energy | | | | Technology)—RX | 12 | | | 7.7 1Mbps GFSK (Bluetooth Low Energy | | | | Technology)—TX | 13 | | | 7.8 24MHz Crystal Oscillator (XOSC_HF) | | | | 7.9 32.768kHz Crystal Oscillator (XOSC_LF) | | | | 7.10 48MHz RC Oscillator (RCOSC_HF) | | | | 7.11 32kHz RC Oscillator (RCOSC_LF)
7.12 ADC Characteristics | | | | 7.13 Temperature Sensor | | | | 7.14 Battery Monitor | | | | 7.15 Continuous Time Comparator | | | | 7.16 Low-Power Clocked Comparator | | | | 7.17 Programmable Current Source | | | | 7.18 Synchronous Serial Interface (SSI) | | | | 7.19 DC Characteristics | | | | 7.20 Thermal Resistance Characteristics for RGZ | | | | Package | 20 | | 7.21 Timing Requirements | 21 | |---|------| | 7.22 Switching Characteristics | | | 7.23 Typical Characteristics | | | 8 Detailed Description | | | 8.1 Overview | | | 8.2 Main CPU | | | 8.3 RF Core | | | 8.4 Sensor Controller | | | 8.5 Memory | | | 8.6 Debug | | | 8.7 Power Management | | | 8.8 Clock Systems | | | 8.9 General Peripherals and Modules | | | 8.10 System Architecture | | | 9 Application, Implementation, and Layout | | | 9.1 Application Information | | | 9.2 7 × 7 Internal Differential (7ID) Application Circuit | 34 | | 10 Device and Documentation Support | | | 10.1 Device Nomenclature | | | 10.2 Tools and Software | . 37 | | 10.3 Documentation Support | 38 | | 10.4 Texas Instruments Low-Power RF Website | 38 | | 10.5 支持资源 | 38 | | 10.6 Trademarks | 38 | | 10.7 静电放电警告 | . 38 | | 10.8 Export Control Notice | 38 | | 10.9 术语表 | 38 | | 11 Revision History | | | 12 Mechanical, Packaging, and Orderable | | | Information | 40 | | 12.1 Packaging Information | . 40 | ## **5 Device Comparison** ## 表 5-1. Device Family Overview | DEVICE | PHY SUPPORT | FLASH
(KB) | RAM
(KB) | GPIO | PACKAGE ⁽¹⁾ | | | |-----------------------------|--|---------------|-------------|----------------|-------------------------------|--|--| | CC2640R2F-Q1 ⁽²⁾ | Bluetooth Low Energy (Normal, High
Speed, Long Range, Automotive) | 128 | 20 | 31 | RGZ (Wettable Flanks),
RGZ | | | | CC2640R2Fxxx ⁽²⁾ | Bluetooth Low Energy (Normal, High
Speed, Long Range) | 128 | 20 | 31, 15, 14, 10 | RGZ, RHB, YFV, RSM | | | | CC2650F128xxx | Multi-Protocol ⁽³⁾ | 128 | 20 | 31, 15, 10 | RGZ, RHB, RSM | | | | CC2640F128xxx | Bluetooth Low Energy (Normal) | 128 | 20 | 31, 15, 10 | RGZ, RHB, RSM | | | | CC2630F128xxx | IEEE 802.15.4 (Zigbee/6LoWPAN) | 128 | 20 | 31, 15, 10 | RGZ, RHB, RSM | | | | CC2620F128xxx | IEEE 802.15.4 (RF4CE) | 128 | 20 | 31, 10 | RGZ, RSM | | | - (1) Package designator replaces the xxx in device name to form a complete device name, RGZ is 7mm × 7mm VQFN48, RHB is 5mm × 5mm VQFN32, RSM is 4mm × 4mm VQFN32, and YFV is 2.7mm × 2.7mm DSBGA. - (2) CC2640R2F-xxx devices contain Bluetooth 4.2 Host and Controller libraries in ROM, leaving more of the 128KB of flash available for the customer application when used with supported BLE-Stack software protocol stack releases. Actual use of ROM and flash by the protocol stack may vary depending on device software configuration. See Bluetooth Low Energy Stack for more details. - (3) The CC2650 device supports all PHYs and can be reflashed to run all the supported standards. ## 表 5-2. Typical ⁽¹⁾ Flash Memory Available for Customer Applications | DEVICE | SIMPLE BLE PERIPHERAL (BT 4.0) ⁽²⁾ | SIMPLE BLE PERIPHERAL (BT 4.2) ^{(2) (3)} | |---|---|---| | CC2640R2Fxxx, CC2640R2F-Q1 ⁽⁴⁾ | 83KB | 80KB | | CC2640F128xxx, CC2650F128xxx | 41KB | 31KB | - (1) Actual use of ROM and flash by the protocol stack will vary depending on the device software configuration. The values in this table are provided as guidance only. - (2) Application example with two services (GAP and Simple Profile). Compiled using IAR. - (3) BT4.2 configuration, including Secure Pairing, Privacy 1.2, and Data Length Extension - (4) Bluetooth Low Energy applications running on the CC2640R2F-Q1 device make use of up to 115KB of system ROM and up to 32KB of RF Core ROM to minimize flash usage. The maximum amount of nonvolatile memory available for Bluetooth Low Energy applications on the CC2640R2F-Q1 device is thus 275KB (128KB flash + 147KB ROM). Product Folder Links: CC2640R2F-Q1 Copyright © 2025 Texas Instruments Incorporated #### 5.1 Related Products Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low power RF solutions suitable for a broad range of applications. The offerings range from fully customized solutions to turn key offerings with pre-certified hardware and software (protocol). TI's SimpleLink™ Sub-1GHz Wireless MCUs Long-range, low-power wireless connectivity solutions are offered in a wide range of Sub-1GHz ISM bands. Design & development SimpleLink™ CC2640R2 Wireless MCU LaunchPad™ Development Kit Review design and development resources that are available for this product. The CC2640R2 LaunchPad[™] development kit brings easy Bluetooth Low Energy (BLE) connection to the LaunchPad ecosystem with the SimpleLink ultra-low power CC26xx family of devices. Compared to the CC2650 LaunchPad kit, the CC2640R2 LaunchPad kit provides the following: - More free flash memory for the user application in the CC2640R2 wireless MCU - Out-of-the-box support for Bluetooth 4.2 specification - 4× faster over-the-air download speed compared to Bluetooth 4.1 SimpleLink™ Bluetooth Low Energy/ Multistandard SensorTag Reference Designs for CC2640 The SensorTag IoT kit invites you to realize your cloud-connected product idea. The SensorTag includes 10 low-power MEMS sensors in a tiny red package, and it is expandable with DevPacks to make it easy to add your own sensors or actuators. TI Reference Design Library is a robust reference design library spanning analog, embedded processor and connectivity. Created by TI experts to help you jump-start your system design, all TI Designs include schematic or block diagrams, BOMs and design files to speed your time to market. Search and download designs at ti.com/tidesigns. 提交文档反馈 Copyright © 2025 Texas Instruments Incorporated ## 6 Pin Configuration and Functions ## 6.1 Pin Diagram—RGZ Package The following I/O pins
marked in **bold** have high-drive capabilities: - Pin 10: DIO_5 - Pin 11: DIO 6 - Pin 12: DIO_7 - Pin 24: JTAG_TMSC - Pin 26: DIO 16 - Pin 27: DIO 17 The following I/O pins marked in italics have analog capabilities: - Pin 36: DIO 23 - Pin 37: DIO 24 - Pin 38: DIO_25 - Pin 39: DIO 26 - Pin 40: DIO_27 - Pin 41: DIO_28 - Pin 42: DIO 29 - Pin 43: DIO 30 图 6-1. 48-Pin RGZ Packagewith Wettable Flanks, 7mm × 7mm Pinout, 0.5mm Pitch (Top View) # 6.2 Signal Descriptions—RGZ Package 表 6-1. Signal Descriptions—RGZ Package | NAME | NO. | TYPE | DESCRIPTION | |-----------|-----|--------------------|--| | DCDC_SW | 33 | Power | Output from internal DC/DC ⁽¹⁾ | | DCOUPL | 23 | Power | 1.27V regulated digital-supply decoupling capacitor ⁽²⁾ | | DIO_0 | 5 | Digital I/O | GPIO, Sensor Controller | | DIO_1 | 6 | Digital I/O | GPIO, Sensor Controller | | DIO_2 | 7 | Digital I/O | GPIO, Sensor Controller | | DIO_3 | 8 | Digital I/O | GPIO, Sensor Controller | | DIO_4 | 9 | Digital I/O | GPIO, Sensor Controller | | DIO_5 | 10 | Digital I/O | GPIO, Sensor Controller, high-drive capability | | DIO_6 | 11 | Digital I/O | GPIO, Sensor Controller, high-drive capability | | DIO_7 | 12 | Digital I/O | GPIO, Sensor Controller, high-drive capability | | DIO_8 | 14 | Digital I/O | GPIO | | DIO_9 | 15 | Digital I/O | GPIO | | DIO_10 | 16 | Digital I/O | GPIO | | DIO_11 | 17 | Digital I/O | GPIO | | DIO_11 | 18 | Digital I/O | GPIO | | | | | GPIO | | DIO_13 | 19 | Digital I/O | GPIO
GPIO | | DIO_14 | 20 | Digital I/O | | | DIO_15 | 21 | Digital I/O | GPIO | | DIO_16 | 26 | Digital I/O | GPIO, JTAG_TDO, high-drive capability | | DIO_17 | 27 | Digital I/O | GPIO, JTAG_TDI, high-drive capability | | DIO_18 | 28 | Digital I/O | GPIO CRISCO | | DIO_19 | 29 | Digital I/O | GPIO CRISCO | | DIO_20 | 30 | Digital I/O | GPIO | | DIO_21 | 31 | Digital I/O | GPIO | | DIO_22 | 32 | Digital I/O | GPIO | | DIO_23 | 36 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_24 | 37 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_25 | 38 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_26 | 39 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_27 | 40 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_28 | 41 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_29 | 42 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | DIO_30 | 43 | Digital/Analog I/O | GPIO, Sensor Controller, Analog | | JTAG_TMSC | 24 | Digital I/O | JTAG TMSC, high-drive capability | | JTAG_TCKC | 25 | Digital I/O | JTAG TCKC | | RESET_N | 35 | Digital input | Reset, active-low. No internal pullup. | | RF_P | 1 | RF I/O | Positive RF input signal to LNA during RX Positive RF output signal to PA during TX | | RF_N | 2 | RF I/O | Negative RF input signal to LNA during RX
Negative RF output signal to PA during TX | | VDDR | 45 | Power | Connect to output of internal DC/DC ⁽²⁾ (3) | | VDDR_RF | 48 | Power | Connect to output of internal DC/DC ⁽²⁾ (4) | 表 6-1. Signal Descriptions—RGZ Package (续) | 表 0-1. Olyndi Descriptions 1102 rackage (疾) | | | | | | |---|-----|------------|--|--|--| | NAME | NO. | TYPE | DESCRIPTION | | | | VDDS | 44 | Power | 1.8V to 3.8V main chip supply ⁽¹⁾ | | | | VDDS2 | 13 | Power | 1.8V to 3.8V DIO supply ⁽¹⁾ | | | | VDDS3 | 22 | Power | 1.8V to 3.8V DIO supply ⁽¹⁾ | | | | VDDS_DCDC | 34 | Power | 1.8V to 3.8V DC/DC supply | | | | X32K_Q1 | 3 | Analog I/O | 32kHz crystal oscillator pin 1 | | | | X32K_Q2 | 4 | Analog I/O | 32kHz crystal oscillator pin 2 | | | | X24M_N | 46 | Analog I/O | 24MHz crystal oscillator pin 1 | | | | X24M_P | 47 | Analog I/O | 24MHz crystal oscillator pin 2 | | | | EGP | | Power | Ground—Exposed Ground Pad | | | - (1) See the technical reference manual listed in \ddagger 10.3 for more details. - (2) Do not supply external circuitry from this pin. - (3) If internal DC/DC is not used, this pin is supplied internally from the main LDO. - (4) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO. ### 6.3 Wettable Flanks The automotive industry requires original equipment manufacturers (OEMs) to perform 100% automated visual inspection (AVI) post-assembly to ensure that cars meet the current demands for safety and high reliability. Standard quad-flat no-lead (VQFN) packages do not have solderable or exposed pins/terminals that are easily viewed. It is therefore difficult to determine visually whether or not the package is successfully soldered onto the printed circuit board (PCB). To resolve the issue of side-lead wetting of leadless packaging for automotive and commercial component manufacturers, the wettable-flank process was developed. The wettable flanks on the VQFN package provide a visual indicator of solderability and thereby lower the inspection time and manufacturing costs. The CC2640R2F-Q1 device is assembled using an automotive-grade VQFN package with wettable flanks. ## 7 Specifications ## 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN | MAX | UNIT | |---|--|-------|------------|------| | Supply voltage, VDDS ⁽³⁾ | VDDR supplied by internal DC/DC regulator or internal GLDO. VDDS_DCDC connected to VDDS on PCB. | - 0.3 | 4.1 | V | | Voltage on any digital pin ^{(4) (5)} | oltage on any digital $pin^{(4)}$ (5) -0.3 VDDS + 0.3, max 4.1 | | | V | | Voltage on crystal oscillator pins | oltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P - 0.3 VDDR + 0.3, max 2.2 | | | V | | | Voltage scaling enabled | - 0.3 | VDDS | | | Voltage on ADC input (V _{in}) | Voltage scaling disabled, internal reference | - 0.3 | 1.49 | V | | | Voltage scaling disabled, VDDS as reference | - 0.3 | VDDS / 2.9 | | | Input RF level | | | 5 | dBm | | T _{stg} | Storage temperature | - 40 | 150 | °C | - (1) All voltage values are with respect to ground, unless otherwise noted. - (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (3) VDDS2 and VDDS3 need to be at the same potential as VDDS. - (4) Including analog-capable DIO. - (5) Injection current is not supported on any GPIO pin. #### 7.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------------|-------------------------|---|------------------|-------|------| | V _{ESD} Electro | | Human Body Model (HBM), per AEC Q100-002 ^{(1) (2)} | All pins | ±2000 | | | | Electrostatic discharge | Charged Device Model (CDM), per AEC Q100-011 ⁽³⁾ | XOCS pins 46, 47 | ±250 | V | | | | Charged Device Model (CDM), per AEC Q100-01107 | All other pins | ±500 | | - (1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. - (2) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. - (3) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |--------------------------------|--|------|------|------| | Ambient temperature | | - 40 | 105 | °C | | Operating supply voltage, VDDS | For operation in battery-powered and 3.3V systems (internal DC/DC can be used to minimize power consumption) | 1.8 | 3.8 | V | | GPIO Input Voltage | | 0 | VDDS | V | Copyright © 2025 Texas Instruments Incorporated Product Folder Links: CC2640R2F-Q1 # 7.4 Power Consumption Summary Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V with internal DC/DC converter, unless otherwise noted. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | |-------------------|------------------------------|---|-------------------|-----|-----|------|--| | | | Reset. RESET_N pin asserted or VDDS below power-on-reset (POR) threshold | | 100 | | nA | | | | | Shutdown. No clocks running, no retention | | 150 | | | | | | | Standby. With RTC, CPU, RAM and (partial) register retention. RCOSC_LF | | 1.3 | | | | | I _{core} | | Standby. With RTC, CPU, RAM and (partial) register retention. XOSC_LF | | 1.5 | | | | | | Core current consumption | Standby. With Cache, RTC, CPU, RAM and (partial) register retention. RCOSC_LF | | 3.4 | | μА | | | | | Standby. With Cache, RTC, CPU, RAM and (partial) register retention. XOSC_LF | | 3.6 | | | | | | | Idle. Supply Systems and RAM powered. | | 650 | | | | | | | Active. Core running CoreMark | 1.45mA + 31µA/MHz | | | | | | | | Radio RX | | 6.1 | | mA | | | | | Radio TX, 0dBm output power | | 7.0 | | | | | | | Radio TX, 5dBm output power | | 9.3 | | | | | Periph | eral Current Consumption (Ad | dds to core current I _{core} for each peripheral unit a | ctivated)(1) | | | 1 | | | | Peripheral power domain | Delta current with domain enabled | | 20 | | μA | | | | Serial power domain | Delta current with domain enabled | | 13 | | μA | | | | RF Core | Delta current with power domain enabled, clock enabled, RF core idle | | 237 | | μА | | | | μDMA | Delta current with clock enabled, module idle | | 130 | | μA | | | I _{peri} | Timers | Delta
current with clock enabled, module idle | | 113 | | μA | | | | I ² C | Delta current with clock enabled, module idle | d, module idle 12 | | | μA | | | | 12S | Delta current with clock enabled, module idle | | 36 | | μA | | | | SSI | Delta current with clock enabled, module idle | | 93 | | μA | | | | UART | Delta current with clock enabled, module idle | | 164 | | μA | | ⁽¹⁾ I_{peri} is not supported in Standby or Shutdown. ## 7.5 General Characteristics $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | |--|--|------|------|------|-------------------|--|--|--| | FLASH MEMORY | | | | | | | | | | Supported flash erase cycles before failure | | 100 | | | k Cycles | | | | | Maximum number of write operations per row before erase ⁽¹⁾ | | | | 83 | write operations | | | | | Flash retention | 105°C | 11.4 | | | Years at
105°C | | | | | Flash page/sector erase current | Average delta current | | 12.6 | | mA | | | | | Flash page/sector size | | | 4 | | KB | | | | | Flash page/sector erase time ⁽²⁾ | Zero cycles | | 8 | | ms | | | | | Flash page/sector erase time (2) | 30 000 cycles | | | 4000 | ms | | | | | Flash write current | Average delta current, 4 bytes at a time | | 8.15 | | mA | | | | 提交文档反馈 ## 7.5 General Characteristics (续) T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-------------------|-----|-----|-----|------| | Flash write time | 4 bytes at a time | | 8 | | μs | - 1) Each row is 2048 bits (or 256 bytes) wide. - (2) This number is dependent on Flash aging and will increase over time and erase cycles. ## 7.6 1Mbps GFSK (Bluetooth Low Energy Technology)—RX Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V, f_{RF} = 2440MHz, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |---|---|----------------------------|-----|------| | Receiver sensitivity | Differential mode. Measured at the CC2640Q1EM-7ID SMA connector, BER = 10^{-3} | - 97 | | dBm | | Receiver saturation | Differential mode. Measured at the CC2640Q1EM-7ID SMA connector, BER = 10 - 3 | 4 | | dBm | | Frequency error tolerance | Difference between the incoming carrier frequency and the internally generated carrier frequency | - 350 | 350 | kHz | | Data rate error tolerance | Difference between incoming data rate and the internally generated data rate | - 750 | 750 | ppm | | Co-channel rejection ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer in channel, BER = 10 ⁻³ | - 6 | | dB | | Selectivity, ±1MHz ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at ±1MHz, BER = 10 ⁻³ | 7 / 2 ⁽¹⁾ | | dB | | Selectivity, ±2MHz ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at ±2MHz, Image frequency is at - 2MHz, BER = 10 ⁻³ | 39 / 17 ^{(2) (1)} | | dB | | Selectivity, ±3MHz ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at ±3MHz, BER = 10 ⁻³ | 38 / 30 ⁽¹⁾ | | dB | | Selectivity, ±4MHz ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at ±4MHz, BER = 10 ⁻³ | 42 / 36 ⁽¹⁾ | | dB | | Selectivity, ±5MHz or more ⁽³⁾ | Wanted signal at − 67dBm, modulated interferer at ≥ ±5MHz, BER = 10 ^{- 3} | 32 | | dB | | Selectivity, Image frequency ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at image frequency, BER = 10 - 3 | 17 | | dB | | Selectivity, Image frequency ±1MHz ⁽³⁾ | Wanted signal at - 67dBm, modulated interferer at ±1MHz from image frequency, BER = 10 - 3 | 2 / 30 ⁽¹⁾ | | dB | | Out-of-band blocking (4) | 30MHz to 2000MHz | - 20 | | dBm | | Out-of-band blocking | 2003MHz to 2399MHz | - 5 | | dBm | | Out-of-band blocking | 2484MHz to 2997MHz | - 8 | | dBm | | Out-of-band blocking | 3000MHz to 12.75GHz | - 8 | | dBm | | Intermodulation | Wanted signal at 2402MHz, - 64dBm. Two interferers at 2405 and 2408MHz respectively, at the given power level | - 34 | | dBm | | Spurious emissions,
30MHz to 1000MHz | Conducted measurement in a 50 Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440, FCC CFR47, Part 15 and ARIB STD-T-66 | - 65 | | dBm | | Spurious emissions,
1GHz to 12.75 GHz | Conducted measurement in a 50 Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440, FCC CFR47, Part 15 and ARIB STD-T-66 | - 52 | | dBm | | RSSI dynamic range | | 70 | | dB | | RSSI accuracy | | ±4 | | dB | Product Folder Links: CC2640R2F-Q1 - (1) X / Y, where X is +N MHz and Y is N MHz. - (2) +2MHz selectivity is reduced to 33dB when using radio FW supporting 2Mbps and Coded PHYs Copyright © 2025 Texas Instruments Incorporated #### www.ti.com.cn - Numbers given as I/C dB. - (4) Excluding one exception at F_{wanted} / 2, per Bluetooth Specification. ## 7.7 1Mbps GFSK (Bluetooth Low Energy Technology)—TX Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V, f_{RF} = 2440MHz, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|---|-----|------|-----|------| | Output power, highest setting | Differential mode, delivered to a single-ended 50 $\!\Omega$ load through a balun | | 5 | | dBm | | Output power, lowest setting | Delivered to a single-ended 50 Ω load through a balun | | - 21 | | dBm | | | f < 1GHz, outside restricted bands | | - 44 | | dBm | | Spurious emission conducted | f < 1GHz, restricted bands ETSI | | - 62 | | dBm | | measurement ⁽¹⁾ | f < 1GHz, restricted bands FCC | | - 62 | | dBm | | | f > 1GHz, including harmonics | | - 55 | | dBm | ⁽¹⁾ Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan). ## 7.8 24MHz Crystal Oscillator (XOSC_HF) $T_c = 25^{\circ}C$, $V_{DDS} = 3.0V$, unless otherwise noted.⁽¹⁾ | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|--|------|---------------------------------|-----|------| | ESR Equivalent series resistance ⁽²⁾ | $6pF < C_L \le 9pF$ | | 20 | 60 | Ω | | ESR Equivalent series resistance ⁽²⁾ | $5pF < C_L \le 6pF$ | | | 80 | Ω | | L _M Motional inductance ⁽²⁾ | Relates to load capacitance (C _L in Farads) | | $< 1.6 \times 10^{-24} / C_L^2$ | | Н | | C _L Crystal load capacitance ⁽²⁾ | | 5 | | 9 | pF | | Crystal frequency ^{(2) (3)} | | | 24 | | MHz | | Crystal frequency tolerance ^{(2) (4)} | | - 40 | | 40 | ppm | | Start-up time ^{(3) (5)} | | | 150 | | μs | - (1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device. - (2) The crystal manufacturer's specification must satisfy this requirement - (3) Measured on the TI CC2640Q1EM-7ID reference design with $T_c = 25$ °C, $V_{DDS} = 3.0V$ - (4) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance, as per Bluetooth specification. - (5) Kick-started based on a temperature and aging compensated RCOSC HF using precharge injection. ### 7.9 32.768kHz Crystal Oscillator (XOSC_LF) $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. Copyright © 2025 Texas Instruments Incorporated | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|-----------------|-------|--------|-----|---------------------| | Crystal frequency ⁽¹⁾ | | | 32.768 | | kHz | | Crystal frequency tolerance, Bluetooth low-
energy applications ⁽¹⁾ (2) | | - 500 | | 500 | ppm | | ESR Equivalent series resistance ⁽¹⁾ | | | 30 | 100 | $\mathbf{k} \Omega$ | | C _L Crystal load capacitance ⁽¹⁾ | | 6 | | 12 | pF | - 1) The crystal manufacturer's specification must satisfy this requirement. - (2) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance, as per Bluetooth specification. ## 7.10 48MHz RC Oscillator (RCOSC_HF) Measured on the TI CC2640Q1EM-7ID reference design with $T_c = 25^{\circ}C$, $V_{DDS} = 3.0V$, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |--|-----------------|---------|-----|------| | Frequency | | 48 | | MHz | | Uncalibrated frequency accuracy | | ±1% | | | | Calibrated frequency accuracy ⁽¹⁾ | | ±0.25% | | | | Start-up time | | 5 | | μs | ⁽¹⁾ Accuracy relative to the calibration source (XOSC HF). ## 7.11 32kHz RC Oscillator (RCOSC_LF) Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|-----------------|-----|------|-----|--------| | Calibrated frequency ⁽¹⁾ | | | 32.8 | | kHz | | Temperature coefficient | | | 50 | | ppm/°C | ⁽¹⁾ The frequency accuracy of the real time clock (RTC) is not directly dependent on the frequency accuracy of the 32kHz RC oscillator. The RTC can be calibrated by measuring the frequency error of RCOSC_LF relative to XOSC_HF and compensating the RTC tick speed. #### 7.12 ADC Characteristics $T_c = 25^{\circ}C$, $V_{DDS} = 3.0V$ without internal DC/DC converter and with voltage scaling enabled, unless otherwise noted. (1) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|-----------------------------
---|-----|-------|------|------| | | Input voltage range | | 0 | | VDDS | V | | | Resolution | | | 12 | | Bits | | | Sample rate | | | | 200 | ksps | | | Offset | Internal 4.3V equivalent reference ⁽²⁾ | | 2 | | LSB | | | Gain error | Internal 4.3V equivalent reference ⁽²⁾ | | 2.4 | | LSB | | DNL ⁽³⁾ | Differential nonlinearity | | | > - 1 | | LSB | | INL ⁽⁴⁾ | Integral nonlinearity | | | ±3 | | LSB | | | | Internal 4.3V equivalent reference ⁽²⁾ , 200ksps, 9.6kHz input tone | | 9.8 | | | | ENOB | Effective number of bits | VDDS as reference, 200ksps, 9.6kHz input tone | | 10 | | Bits | | | | Internal 1.44V reference, voltage scaling disabled, 32 samples average, 200ksps, 300Hz input tone | | 11.1 | | | | | | Internal 4.3V equivalent reference ⁽²⁾ , 200ksps, 9.6kHz input tone | | - 65 | | | | THD | Total harmonic distortion | VDDS as reference, 200ksps, 9.6kHz input tone | | - 69 | | dB | | | | Internal 1.44V reference, voltage scaling disabled, 32 samples average, 200ksps, 300Hz input tone | | - 71 | | | | | Signal-to-noise | Internal 4.3V equivalent reference ⁽²⁾ , 200ksps, 9.6kHz input tone | | 60 | | | | SINAD,
SNDR | and | VDDS as reference, 200ksps, 9.6kHz input tone | | 63 | | dB | | ONDIN | Distortion ratio | Internal 1.44V reference, voltage scaling disabled, 32 samples average, 200ksps, 300Hz input tone | | 69 | | | | | | Internal 4.3V equivalent reference ⁽²⁾ , 200ksps, 9.6kHz input tone | | 67 | | | | SFDR | Spurious-free dynamic range | VDDS as reference, 200ksps, 9.6kHz input tone | | 72 | | dB | | | 95 | Internal 1.44V reference, voltage scaling disabled, 32 samples average, 200ksps, 300Hz input tone | | 73 | | | Copyright © 2025 Texas Instruments Incorporated www.ti.com.cn T_c = 25°C, V_{DDS} = 3.0V without internal DC/DC converter and with voltage scaling enabled, unless otherwise noted. (1) | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |---------------------|---|-------------------------------|-----|------------------| | Conversion time | Serial conversion, time-to-output, 24MHz clock | 50 | | clock-
cycles | | Current consumption | Internal 4.3V equivalent reference ⁽²⁾ | 0.66 | | mA | | Current consumption | VDDS as reference | 0.75 | | mA | | Reference voltage | Equivalent fixed internal reference (input voltage scaling enabled). For best accuracy, the ADC conversion should be initiated through the TI-RTOS API to include the gain/ offset compensation factors stored in FCFG1. | 4.3 ^{(2) (5)} | | ٧ | | Reference voltage | Fixed internal reference (input-voltage scaling disabled). For the best accuracy, the ADC conversion should be initiated through the TI-RTOS API to include the gain/offset compensation factors stored in FCFG1. This value is derived from the scaled value (4.3V) as follows. $V_{\text{ref}} = 4.3V \times 1408 / 4095$ | 1.48 | | V | | Reference voltage | VDDS as reference (also known as <i>RELATIVE</i>) (input voltage scaling enabled) | VDDS | | V | | Reference voltage | VDDS as reference (also known as <i>RELATIVE</i>) (input voltage scaling disabled) | VDDS /
2.82 ⁽⁵⁾ | | ٧ | | Input Impedance | 200ksps, voltage scaling enabled. Capacitive input, input impedance depends on sampling frequency and sampling time | >1 | | ΜΩ | - (1) Using IEEE Std 1241[™]-2010 for terminology and test methods. - (2) Input signal scaled down internally before conversion, as if voltage range was 0V to 4.3V. - (3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on the device (see 🛭 7-21). - (4) For a typical example, see <a> 7-22. - (5) Applied voltage must be within absolute maximum ratings at all times (see 节 7.1). #### 7.13 Temperature Sensor Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|-----------------|------|-----|-----|------| | Resolution | | | 4 | | °C | | Range | | - 40 | | 105 | °C | | Accuracy | | | ±5 | | °C | | Supply voltage coefficient ⁽¹⁾ | | | 3.2 | | °C/V | ⁽¹⁾ Automatically compensated when using supplied driver libraries. ## 7.14 Battery Monitor Measured on the TI CC2640Q1EM-7ID reference design with $T_c = 25^{\circ}C$, $V_{DDS} = 3.0V$, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------|-----------------|-----|-----|-----|------| | Resolution | | | 50 | | mV | | Range | | 1.8 | | 3.8 | V | | Accuracy | | | 13 | | mV | ## 7.15 Continuous Time Comparator Copyright © 2025 Texas Instruments Incorporated $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP MA | X UNIT | |----------------------------|---------------------|-----|--------|--------| | Input voltage range | | 0 | VDD | S V | | External reference voltage | | 0 | VDD | S V | | Internal reference voltage | DCOUPL as reference | | 1.27 | V | T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|--------------------------|-----|------|-----|------| | Offset | | | 3 | | mV | | Hysteresis | | | <2 | | mV | | Decision time | Step from - 10mV to 10mV | | 0.72 | | μs | | Current consumption when enabled ⁽¹⁾ | | | 8.6 | | μΑ | ⁽¹⁾ Additionally, the bias module must be enabled when running in standby mode. 16 ## 7.16 Low-Power Clocked Comparator $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|--------------------------|-----|-------------|------|-------------| | Input voltage range | | 0 | | VDDS | V | | Clock frequency | | | 32 | | kHz | | Internal reference voltage, VDDS / 2 | | | 1.49 - 1.51 | | V | | Internal reference voltage, VDDS / 3 | | | 1.01 - 1.03 | | V | | Internal reference voltage, VDDS / 4 | | | 0.78 - 0.79 | | V | | Internal reference voltage, DCOUPL / 1 | | | 1.25 - 1.28 | | V | | Internal reference voltage, DCOUPL / 2 | | | 0.63 - 0.65 | | V | | Internal reference voltage, DCOUPL / 3 | | | 0.42 - 0.44 | | V | | Internal reference voltage, DCOUPL / 4 | | | 0.33 - 0.34 | | V | | Offset | | | <2 | | mV | | Hysteresis | | | <5 | | mV | | Decision time | Step from - 50mV to 50mV | | <1 | | clock-cycle | | Current consumption when enabled | | | 362 | | nA | ## 7.17 Programmable Current Source T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|---|-----|-----------|-----|------| | Current source programmable output range | | | 0.25 - 20 | | μΑ | | Resolution | | | 0.25 | | μΑ | | Current consumption ⁽¹⁾ | Including current source at maximum programmable output | | 23 | | μA | ⁽¹⁾ Additionally, the bias module must be enabled when running in standby mode. ## 7.18 Synchronous Serial Interface (SSI) T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | ETER TEST CONDITIONS | | TYP | MAX | UNIT | |--|---|----|-----|-------|----------------------| | S1 ⁽¹⁾ t _{clk_per} (SSIClk period) | Device operating as SLAVE | 12 | | 65024 | system
clocks | | S2 ⁽¹⁾ t _{clk_high} (SSIClk high time) | Device operating as SLAVE | | 0.5 | | t _{clk_per} | | S3 ⁽¹⁾ t _{clk_low} (SSIClk low time) | Device operating as SLAVE | | 0.5 | | t _{clk_per} | | S1 (TX only) ⁽¹⁾ t _{clk_per} (SSIClk period) | One-way communication to SLAVE:
Device operating as MASTER | 4 | | 65024 | system
clocks | | S1 (TX and RX) ⁽¹⁾ t _{clk_per} (SSIClk period) | Normal duplex operation:
Device operating as MASTER | 8 | | 65024 | system
clocks | | S2 ⁽¹⁾ t _{clk_high} (SSIClk high time) | Device operating as MASTER | | 0.5 | | t _{clk_per} | | S3 ⁽¹⁾ t _{clk_low} (SSIClk low time) | Device operating as MASTER | | 0.5 | | t _{clk_per} | (1) Refer to SSI timing diagrams 图 7-1, 图 7-2, and 图 7-3. 图 7-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement 图 7-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer 图 7-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1 ## 7.19 DC Characteristics | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|--|------|------|------|------| | T _A = 25°C, V _{DDS} = 1.8V | | | | | | | GPIO V _{OH} at 8mA load | IOCURR = 2, high-drive GPIOs only | 1.32 | 1.54 | | V | | GPIO V _{OL} at 8mA load | IOCURR = 2, high-drive GPIOs only | | 0.26 | 0.32 | V | | GPIO V _{OH} at 4mA load | IOCURR = 1 | 1.32 | 1.58 | | V | | GPIO V _{OL} at 4mA load | IOCURR = 1 | | 0.21 | 0.32 | V | | GPIO pullup current | Input mode, pullup enabled, V _(pad) = 0V | | 71.7 | | μA | | GPIO pulldown current | Input mode, pulldown enabled, V _(pad) = VDDS | | 21.1 | | μA | | GPIO high/low input transition, no hysteresis | I _H = 0, transition between reading 0 and reading 1 | | 0.88 | | V | | GPIO low-to-high input transition, with hysteresis | I _H = 1, transition voltage for input read as 0 → 1 | | 1.07 | | V | | GPIO high-to-low input transition, with hysteresis | I _H = 1, transition voltage for input read as 1 → 0 | | 0.74 | | V | | GPIO input hysteresis | I _H = 1, difference between 0 → 1 and 1 → 0 points | 0.33 | | | V | | PARAMETER | TEST CONDITIONS |
MIN | TYP | MAX | UNIT | |--|--|-----|------|-----|---------------------| | T _A = 25°C, V _{DDS} = 3.0V | ' | | | | | | GPIO V _{OH} at 8mA load | IOCURR = 2, high-drive GPIOs only | | 2.68 | | V | | GPIO V _{OL} at 8mA load | IOCURR = 2, high-drive GPIOs only | | 0.33 | | V | | GPIO V _{OH} at 4mA load | IOCURR = 1 | | 2.72 | | V | | GPIO V _{OL} at 4mA load | IOCURR = 1 | | 0.28 | | V | | T _A = 25°C, V _{DDS} = 3.8V | | | | | | | GPIO pullup current | Input mode, pullup enabled, V _(pad) = 0V | | 277 | | μΑ | | GPIO pulldown current | Input mode, pulldown enabled, V _(pad) = VDDS | | 113 | | μΑ | | GPIO high/low input transition, no hysteresis | I _H = 0, transition between reading 0 and reading 1 | | 1.67 | | V | | GPIO low-to-high input transition, with hysteresis | I _H = 1, transition voltage for input read as 0 → 1 | | 1.94 | | V | | GPIO high-to-low input transition, with hysteresis | I _H = 1, transition voltage for input read as 1 → 0 | | 1.54 | | V | | GPIO input hysteresis | I _H = 1, difference between 0 → 1 and 1 → 0 points | | 0.4 | | V | | T _A = 25°C | , | | | | | | V _(IH) | Lowest GPIO input voltage reliably interpreted as a «High» | | | 0.8 | VDDS ⁽¹⁾ | | $V_{(IL)}$ | Highest GPIO input voltage reliably interpreted as a «Low» | 0.2 | | | VDDS ⁽¹⁾ | ⁽¹⁾ Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 🕆 10.3 for more details. ## 7.20 Thermal Resistance Characteristics for RGZ Package over operating free-air temperature range (unless otherwise noted) | NAME | DESCRIPTION | (°C/W) ⁽¹⁾ (2) | |-------------------------|--|---------------------------| | R θ _{JA} | Junction-to-ambient thermal resistance | 29.6 | | R θ _{JC(top)} | Junction-to-case (top) thermal resistance | 15.7 | | R ^θ JB | Junction-to-board thermal resistance | 6.2 | | Psi _{JT} | Junction-to-top characterization parameter | 0.3 | | Psi _{JB} | Junction-to-board characterization parameter | 6.2 | | R ^{fl} JC(bot) | Junction-to-case (bottom) thermal resistance | 1.9 | - 1) °C/W = degrees Celsius per watt. - (2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [R θ _{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on the environment as well as application. For more information, see the following EIA/JEDEC standards: - · JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air) - JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages - JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages - JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements Power dissipation of 2W and an ambient temperature of 70°C is assumed. Copyright © 2025 Texas Instruments Incorporated Product Folder Links: CC2640R2F-Q1 ## 7.21 Timing Requirements | | | MIN | NOM | MAX | UNIT | |--|--|-----|-----|-----|-------| | Rising supply-voltage slew rate | | 0 | | 100 | mV/μs | | Falling supply-voltage slew rate | | 0 | | 20 | mV/μs | | Falling supply-voltage slew rate, with low-power flash settings ⁽¹⁾ | | | | 3 | mV/μs | | Positive temperature gradient in standby ⁽³⁾ | No limitation for negative temperature gradient, or outside standby mode | | | 5 | °C/s | | CONTROL INPUT AC CHARACTERISTICS ⁽²⁾ | | | | 1 | | | RESET_N low duration | | | | | μs | ⁽¹⁾ For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22μF VDDS input capacitor (see 🛭 9-1) must be used to ensure compliance with this slew rate. ## 7.22 Switching Characteristics Measured on the TI CC2640Q1EM-7ID reference design with T_c = 25°C, V_{DDS} = 3.0V, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------|-----------------|-----|------|-----|------| | WAKEUP and TIMING | | | | | | | Idle → Active | | | 14 | | μs | | Standby → Active | | | 151 | | μs | | Shutdown → Active | | | 1015 | | μs | ⁽²⁾ $T_A = -40$ °C to +105°C, $V_{DDS} = 1.8$ V to 3.8V, unless otherwise noted. ⁽³⁾ Applications using RCOSC_LF as a sleep timer must also consider the drift in frequency caused by a change in temperature. See † 7 11 ## 7.23 Typical Characteristics 图 7-10. TX Current Consumption vs Supply Voltage (VDDS) 图 7-11. RX Mode Current vs Supply Voltage (VDDS) 图 7-12. RX Mode Current Consumption vs **Temperature** 图 7-13. TX Mode Current Consumption vs **Temperature** 图 7-14. Active Mode (MCU Running, No **Peripherals) Current Consumption vs Temperature** Product Folder Links: CC2640R2F-Q1 图 7-15. Active Mode (MCU Running, No Peripherals) Current Consumption vs Supply Voltage (VDDS) 提交文档反馈 图 7-16. Standby Mode Current Consumption vs **Temperature** 图 7-17. SoC ADC Effective Number of Bits vs Input Frequency (Internal Reference, No Scaling) 图 7-18. SoC ADC Output vs Supply Voltage (Fixed Input, Internal Reference, No Scaling) 图 7-19. SoC ADC Output vs Temperature (Fixed Input, Internal Reference, No Scaling) 图 7-20. SoC ADC ENOB vs Sampling Frequency (Input Frequency = FS / 10) Product Folder Links: CC2640R2F-Q1 提交文档反馈 Copyright © 2025 Texas Instruments Incorporated ## 8 Detailed Description #### 8.1 Overview † 4 shows the core modules of the CC26xx product family. #### 8.2 Main CPU The automotive grade SimpleLink™ CC2640R2F-Q1 Wireless MCU contains an Arm® Cortex®-M3 (CM3) 32-bit CPU, which runs the application and the higher layers of the protocol stack. The Cortex®-M3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Cortex-M3 features include the following: - 32-bit Arm® Cortex®-M3 architecture optimized for small-footprint embedded applications - · Outstanding processing performance combined with fast interrupt handling - Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications: - Single-cycle multiply instruction and hardware divide - Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control - Unaligned data access, enabling data to be efficiently packed into memory - Fast code execution permits slower processor clock or increases sleep mode time - · Harvard architecture characterized by separate buses for instruction and data - · Efficient processor core, system, and memories - Hardware division and fast digital-signal-processing oriented multiply accumulate - Saturating arithmetic for signal processing - Deterministic, high-performance interrupt handling for time-critical applications - Enhanced system debug with extensive breakpoint and trace capabilities - Serial wire trace reduces the number of pins required for debugging and tracing - Migration from the ARM7[™] processor family for better performance and power efficiency - · Optimized for single-cycle flash memory use - Ultra-low power consumption with integrated sleep modes - 1.25 DMIPS per MHz #### 8.3 RF Core The RF Core contains an Arm Cortex-M0 processor that interfaces the analog RF and base-band circuitries, handles data to and from the system side, and assembles the information bits in a given packet structure. The RF core offers a high-level, command-based API to the main CPU. The RF core is capable of autonomously handling the time-critical aspects of the radio protocols (*Bluetooth* [®] low energy), thus offloading the main CPU and leaving more resources for the user application. The RF core has a dedicated 4KB SRAM block and runs initially from separate ROM memory. The Arm Cortex-M0 processor is not programmable by customers. Product Folder Links: CC2640R2F-Q1 Copyright © 2025 Texas Instruments Incorporated #### 8.4 Sensor Controller The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly reducing power consumption and offloading the main Cortex-M3 CPU. The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and potential use cases may be (but are not limited to): - Analog sensors using integrated ADC - Digital sensors using GPIOs, bit-banged I²C, and SPI - UART communication for sensor reading or debugging - · Capacitive sensing - Waveform generation - · Pulse counting - Keyboard scan - · Quadrature decoder for polling rotation sensors - Oscillator calibration Texas Instruments provides application examples for some of these use cases, but not for all of them. The peripherals in the Sensor Controller include the following: - The low-power clocked comparator can be used to wake the device from any state in which the comparator is active. A configurable internal reference can be used in conjunction with the comparator. The output of the comparator can also be used to trigger an interrupt or the ADC. - Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital converter, and a comparator. The continuous time comparator in this block can also be used as a higheraccuracy alternative to the low-power clocked comparator. The Sensor Controller will take care of baseline tracking, hysteresis,
filtering and other related functions. - The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC can be triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the RTC. Product Folder Links: CC2640R2F-Q1 - The Sensor Controller also includes a SPI I²C digital interface. - The analog modules can be connected to up to eight different GPIOs. The peripherals in the Sensor Controller can also be controlled from the main application processor. Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 表 8-1. GPIOs Connected to the Sensor Controller (1) | ANALOG CAPABLE | 7 × 7 RGZ
DIO NUMBER | |----------------|-------------------------| | Y | 30 | | Y | 29 | | Y | 28 | | Y | 27 | | Y | 26 | | Y | 25 | | Y | 24 | | Y | 23 | | N | 7 | | N | 6 | | N | 5 | | N | 4 | | N | 3 | | N | 2 | | N | 1 | | N | 0 | ⁽¹⁾ Up to 16 pins can be connected to the Sensor Controller. Up to 8 of these pins can be connected to analog modules. #### 8.5 Memory The flash memory provides nonvolatile storage for code and data. The flash memory is in-system programmable. The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two 4-KB blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or disabled individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8KB cache can be used as a general-purpose RAM. The ROM provides preprogrammed embedded TI-RTOS kernel, Driver Library, and lower layer protocol stack software (*Bluetooth* [®] low energy Controller). It also contains a bootloader that can be used to reprogram the device using SPI or UART. ## 8.6 Debug The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface. Product Folder Links: CC2640R2F-Q1 Copyright © 2025 Texas Instruments Incorporated #### 8.7 Power Management To minimize power consumption, the CC2640R2F-Q1 device supports a number of power modes and power management features (see 表 8-2). **SOFTWARE CONFIGURABLE POWER MODES RESET PIN** MODE **HELD ACTIVE IDLE STANDBY SHUTDOWN CPU** Off Off Off Active Off Flash On Available Off Off Off **SRAM** On On On Off Off Radio Available Available Off Off Off **Supply System** On On **Duty Cycled** Off Off Current $1.45 \text{ mA} + 31 \mu\text{A/MHz}$ 650 µA 1.3 µA 0.15 µA 0.1 µA Wake-up Time to CPU Active(1) 14 µs 151 µs 1015 µs 1015 µs Register Retention Full Full Partial No No SRAM Retention Full Full Full No No XOSC HF or XOSC HF or High-Speed Clock Off Off Off RCOSC_HF RCOSC_HF XOSC LF or XOSC LF or XOSC LF or Low-Speed Clock Off Off RCOSC LF RCOSC LF RCOSC LF Peripherals Available Available Off Off Off Sensor Controller Available Available Available Off Off Wake up on RTC Available Available Available Off Off Wake up on Pin Edge Available Off Available Available Available Wake up on Reset Pin Available Available Available Available Available Brown Out Detector (BOD) **Duty Cycled** Off N/A Active Active Power On Reset (POR) Active Active Active Active N/A 表 8-2. Power Modes #### (1) Not including RTOS overhead In active mode, the application Cortex-M3 CPU is actively executing code. Active mode provides normal operation of the processor and all of the peripherals that are currently enabled. The system clock can be any available clock source (see $\frac{1}{8}$ 8-2). In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked and no code is executed. Any interrupt event will bring the processor back into active mode. In standby mode, only the always-on domain (AON) is active. An external wake event, RTC event, or sensor-controller event is required to bring the device back to active mode. MCU peripherals with retention do not need to be reconfigured when waking up again, and the CPU continues execution from where it went into standby mode. All GPIOs are latched in standby mode. In shutdown mode, the device is turned off entirely, including the AON domain and the Sensor Controller. The I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin defined as a *wake from Shutdown pin* wakes up the device and functions as a reset trigger. The CPU can differentiate between a reset in this way, a reset-by-reset pin, or a power-on-reset by reading the reset status register. The only state retained in this mode is the latched I/O state and the Flash memory contents. The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller independently of the main CPU, which means that the main CPU does not have to wake up, for example, to execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current and wake-up time that would otherwise be wasted. The Sensor Controller Studio enables the user to configure the sensor controller and choose which peripherals are controlled and which conditions wake up the main CPU. Product Folder Links: CC2640R2F-Q1 ## 8.8 Clock Systems The CC2640R2F-Q1 device supports two external and two internal clock sources. A 24MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to create a 48MHz clock. The 32kHz crystal is optional. Bluetooth ® low energy requires a slow-speed clock with better than ±500 ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal 32kHz RC oscillator can, in some use cases, be compensated to meet the requirements. The low-speed crystal oscillator is designed for use with a 32kHz watch-type crystal. The internal high-speed oscillator (48MHz) can be used as a clock source for the CPU subsystem. The internal low-speed oscillator (32.768kHz) can be used as a reference if the low-power crystal oscillator is not used. The 32kHz clock source can be used as an external clocking reference through GPIO. ## 8.9 General Peripherals and Modules The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge (configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs have high drive capabilities (marked in **bold** in 节 6). The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and synchronous serial interfaces from Texas Instruments[™]. The SSIs support both SPI master and slave up to 4 MHz. The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-rate generation up to a maximum of 3 Mbps and is compatible with the Bluetooth ® HCI specifications. Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module. Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0. In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF timer can be synchronized to the RTC. The I²C interface is used to communicate with devices compatible with the I²C standard. The I²C interface is capable of 100kHz and 400kHz operation, and can serve as both I²C master and I²C slave. The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear combinatorial circuit. The watchdog timer is used to regain control if the system fails due to a software error after an external device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a predefined timeout value is reached. > Copyright © 2025 Texas Instruments Incorporated Product Folder Links: CC2640R2F-Q1 The device includes a direct memory access (μ DMA) controller. The μ DMA controller provides a way to offload data transfer tasks from the Cortex-M3 CPU, allowing for more efficient use of the processor and the available bus bandwidth. The μ DMA controller can perform transfer between memory and peripherals. The μ DMA controller has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory as the peripheral is ready to transfer more data. Some features of the μ DMA controller include the following (this is not an exhaustive list): - Highly flexible and configurable channel operation of up to 32 channels - Transfer modes: - Memory-to-memory - Memory-to-peripheral - Peripheral-to-memory - Peripheral-to-peripheral - · Data sizes of 8, 16, and 32 bits The AON domain contains circuitry that is always enabled, except in Shutdown mode (where the digital supply is off). This circuitry includes the following: - The RTC can be used to wake the device from any state where it is active. The RTC contains three compare and one capture registers. With software support, the RTC can be used for clock and calendar operation. The RTC is clocked from the 32kHz RC oscillator or crystal. The RTC can also be compensated to tick at the correct frequency even when the internal 32kHz RC oscillator is used instead of a crystal. - The battery monitor and temperature sensor are accessible by software and give a battery status indication as well as a coarse temperature measure. ## 8.10 System Architecture Depending on the product configuration, the CC2640R2F-Q1 device can function either as a wireless network processor (WNP—a device running the wireless protocol stack with the application
running on a separate MCU), or as a system-on-chip (SoC), with the application and protocol stack running on the Arm Cortex-M3 core inside the device. In the first case, the external host MCU communicates with the device using SPI or UART. In the second case, the application must be written according to the application framework supplied with the wireless protocol stack. Product Folder Links: CC2640R2F-Q1 Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 ## 9 Application, Implementation, and Layout #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 9.1 Application Information Very few external components are required for the operation of the CC2640R2F-Q1 device. This section provides general information about the differential configuration when using the CC2640R2F-Q1 device in an application, and an example application circuit with schematics and layout is shown in № 9-1, № 9-2, № 9-3, and № 9-4. This is only a small selection of the many application circuit examples available as complete reference designs from the product folder on www.ti.com. Copyright © 2017, Texas Instruments Incorporated 图 9-1. CC2640R2F-Q1 Application Circuit № 9-2 shows the various supply voltage configuration options for the CC2640R2F-Q1 device. Not all power supply decoupling capacitors or digital I/Os are shown. For a detailed overview of power supply decoupling and wiring, see the TI reference designs and the CC13x0, CC26x0 SimpleLink Wireless MCU Technical Reference Manual. #### Internal DC-DC Regulator #### **Internal LDO Regulator** Copyright © 2017, Texas Instruments Incorporated 图 9-2. Supply Voltage Configurations ## 9.2 7 × 7 Internal Differential (7ID) Application Circuit 图 9-3. 7 × 7 Internal Differential (7ID) Application Circuit ## 9.2.1 Layout 图 9-4. Layout ## 10 Device and Documentation Support #### **10.1 Device Nomenclature** To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and date-code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, CC2640R2F-Q1 is in production; therefore, no prefix/identification is assigned). Device development evolutionary flow: - **X** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. - **P** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. **null** Production version of the silicon die that is fully qualified. Production devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, *RGZ*). For orderable part numbers of the *CC2640R2F-Q1* device package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative. 图 10-1. Device Nomenclature #### 10.2 Tools and Software TI offers an extensive line of development tools, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The following products support development of the CC2640R2F-Q1 device applications: #### **Software Tools:** SmartRF Studio 7 is a PC application that helps designers of radio systems to easily evaluate the RF-IC at an early stage in the design process. - Test functions for sending and receiving radio packets, continuous wave transmit and receive - Evaluate RF performance on custom boards by wiring it to a supported evaluation board or debugger - Can also be used without any hardware, but then only to generate, edit and export radio configuration settings - Can be used in combination with several development kits for TI's CCxxxx RF-ICs Sensor Controller Studio provides a development environment for the CC26xx Sensor Controller. The Sensor Controller is a proprietary, power-optimized CPU in the CC26xx, which can perform simple background tasks autonomously and independent of the System CPU state. - Allows for Sensor Controller task algorithms to be implemented using a C-like programming language - Outputs a Sensor Controller Interface driver, which incorporates the generated Sensor Controller machine code and associated definitions - Allows for rapid development by using the integrated Sensor Controller task testing and debugging functionality. This allows for live visualization of sensor data and algorithm verification. #### **IDEs and Compilers:** Code Composer Studio™ Integrated Development Environment (IDE): - Integrated development environment with project management tools and editor - Code Composer Studio (CCS) 6.1 and later has built-in support for the CC26xx device family - Best support for XDS debuggers; XDS100v3, XDS110 and XDS200 - High integration with TI-RTOS with support for TI-RTOS Object View #### IAR Embedded Workbench® for Arm®: - Integrated development environment with project management tools and editor - IAR EWARM 7.30.3 and later has built-in support for the CC26xx device family - Broad debugger support, supporting XDS100v3, XDS200, IAR I-Jet and Segger J-Link - Integrated development environment with project management tools and editor - RTOS plugin available for TI-RTOS For a complete listing of development-support tools for the CC2640R2F-Q1 platform, visit the Texas Instruments website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Product Folder Links: CC2640R2F-Q1 Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 ## **10.3 Documentation Support** To receive notification of documentation updates, navigate to the device product folder on ti.com (CC2640R2F-Q1). In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the CC2640R2F-Q1 devices, related peripherals, and other technical collateral is listed in the following. #### **Technical Reference Manual** CC13x0, CC26x0 SimpleLink™ Wireless MCU Technical Reference Manual #### **Errata** CC2640R2F-Q1 SimpleLink™ Wireless MCU Errata #### 10.4 Texas Instruments Low-Power RF Website Texas Instruments' Low-Power RF website has all the latest products, application and design notes, FAQ section, news and events updates. Go to www.ti.com/lprf. #### 10.5 支持资源 TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索 现有解答或提出自己的问题,获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的使用条款。 #### 10.6 Trademarks SimpleLink™, SmartRF™, Code Composer Studio™, 德州仪器 (TI)™, LaunchPad™, Texas Instruments™, and TI E2E[™] are trademarks of Texas Instruments. IEEE Std 1241[™] is a trademark of Institute of Electrical and Electronics Engineers, Incorporated. ARM7[™] is a trademark of Arm Limited (or its subsidiaries). Arm®, Cortex®, and Arm Thumb® are registered trademarks of Arm Limited (or its subsidiaries). CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium. 低功耗蓝牙® is a registered trademark of Bluetooth SIG. Inc. IAR Embedded Workbench® are registered trademarks of IAR Systems AB. Zigbee® is a registered trademark of Zigbee Alliance. 所有商标均为其各自所有者的财产。 ## 10.7 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。 ## **10.8 Export Control Notice** Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. #### 10.9 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 TI 术语表 Copyright © 2025 Texas Instruments Incorporated # 11 Revision History | Changes from Revision B (October 2020) to Revision C (March 2029) | 5) Page | | | | | | | |---|-----------------|--|--|--|--|--|--| | Added recommended GPIO Input Voltage in Recommended Operating Conditions | | | | | | | | | Changes from Revision A (August 2017) to Revision B (October 202 | 20) Page | | | | | | | | • 更新了整个文档中的章节、表格、图和交叉参考的编号 | 1 | | | | | | | | • 更改了节1中的开发工具和软件 | 1 | | | | | | | | • 更改了节 2 | 1 | | | | | | | | 更改了节 3 | 2 | | | | | | | | • Added note to 节 7.1 about injection current and associated this note | | | | | | | | | specification | | | | | | | | | • Removed the flash write time specification's association with note 2 in | n 节 7.5 11 | | | | | | | | · Added "Zero cycles" as the test condition for flash page/sector erase | time in 节 7.511 | | | | | | | | - Added new flash page/sector erase time at 30 000 cycles in $\mbox{\em 7.5} \dots$ | 11 | | | | | | | # 12 Mechanical, Packaging, and Orderable Information ## 12.1 Packaging Information The following pages include mechanical, packaging, and orderable
information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2025 Texas Instruments Incorporated Product Folder Links: CC2640R2F-Q1 RGZ0048N ## PACKAGE OUTLINE ## VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. ## **EXAMPLE BOARD LAYOUT** ## RGZ0048N VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. Copyright © 2025 Texas Instruments Incorporated #### **EXAMPLE STENCIL DESIGN** ## RGZ0048N VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. Product Folder Links: CC2640R2F-Q1 www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|----------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | CC2640R2FTWRGZRQ1 | Active | Production | VQFN (RGZ) 48 | 2500 LARGE T&R | Yes | Call TI Sn | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | | CC2640R2FTWRGZRQ1.A | Active | Production | VQFN (RGZ) 48 | 2500 LARGE T&R | Yes | Call TI | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | | CC2640R2FTWRGZRQ1.B | Active | Production | VQFN (RGZ) 48 | 2500 LARGE T&R | Yes | Call TI | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | | CC2640R2FTWRGZTQ1 | Active | Production | VQFN (RGZ) 48 | 250 SMALL T&R | Yes | Call TI Sn | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | | CC2640R2FTWRGZTQ1.A | Active | Production | VQFN (RGZ) 48 | 250 SMALL T&R | Yes | Call TI | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | | CC2640R2FTWRGZTQ1.B | Active | Production | VQFN (RGZ) 48 | 250 SMALL T&R | Yes | Call TI | Level-3-260C-168 HR | -40 to 105 | CC2640Q1
R2F | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## **PACKAGE OPTION ADDENDUM** www.ti.com 23-May-2025 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CC2640R2F-Q1: Catalog : CC2640R2F NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product ## 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司