

参考文献

BQ77307

ZHCSU54 - DECEMBER 2023

BQ77307 适用于锂离子、锂聚合物、磷酸铁锂 (LFP) 和 LTO 电池包的 2 节至 7 节 串联高精度电池初级或次级保护器

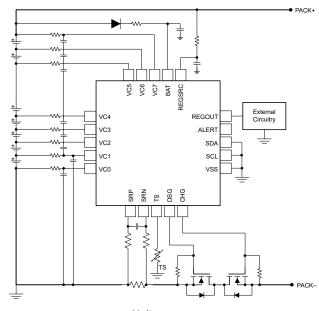
1 特性

- 适用于2至7节串联电芯的初级或次级电压、电流 和温度保护,具有自主恢复选项
- 电压保护:
 - 电芯过压 (COV): 0V 至 5.5V, 步长为 1mV, 精度为 ±4mV
 - 电芯欠压 (CUV): 0V 至 5.5V, 步长为 1mV, 精度为 ±4mV
- 电流保护:
 - 放电短路 (SCD): 10mV 至 500mV,不同步长
 - 充电过流 (OCC): 3mV 至 123mV, 2mV 步长
 - 放电 1 和 2 过流(OCD1 和 OCD2):4mV 至 200mV, 2mV 步长
- 使用外部 NTC 热敏电阻进行温度保护:
 - 充电和放电过热(OTC 和 OTD)
 - 充电和放电欠温(UTC 和 UTD)
 - 内部芯片过热
- 集成低侧驱动器,用于 NFET 保护,具有可选的自 主恢复功能
- 低功耗操作:
 - NORMAL 模式,两个 FET 均启用:8μA
 - NORMAL 模式,FET 禁用:5μA
 - SHUTDOWN 模式: < 1μA
- 电池连接和部分其他引脚上的高电压容差为 45V
- 集成一次性可编程 (OTP) 存储器,用于保存器件设 置,由 TI 编程
- 主机处理器的可编程中断,可通过 I²C 获取状态信
- 400kHz I²C 串行通信,具有可选的 CRC 支持
- 供外部系统使用的可编程 LDO
- 20 引脚 QFN 3.5mm × 3.5mm × 0.9mm (RGR) 封

2 应用

- 无线电动工具和园艺工具
- 真空吸尘器
- 非军用无人机
- 其他工业电池包(2节至7节串联)

3 说明


德州仪器 (TI) BQ77307 系列产品具有高度集成的高 精度初级保护器,适用于2节至7节串联锂离子、 锂聚合物、磷酸铁锂 (LFP) 和 LTO 电池包。每个器 件都包含一个高精度电压、电流和温度保护子系统,该 子系统具有集成式低侧保护 NFET 驱动器和一个供外 部系统使用的可编程 LDO。BQ77307 为主机处理器提 供中断,并集成了一个 I²C 主机通信接口,支持高达 400kHz 的工作频率,具有可选的 CRC,用于读取状

态信息和对设置进行编程。BQ77307 采用 20 引脚 QFN 封装。

器件信息

器件型号	封装(1)	封装尺寸 (标称值)
BQ77307	RGR(20 引脚)	3.5mm×3.5mm× 0.9mm,0.5mm间距

(1) 请参阅数据表末尾的可订购产品附录。

简化原理图

内容

2 应用 1 7.4.10 独立接口与主机接口 20 3 说明 1 7.4.11 ALERT 引脚运行 20 4 器件比较表 3 7.4.12 低频振荡器 2 5 引脚配置和功能 3 7.4.13 I²C 串行通信接口 2 6 规格 5 7.5 保护子系统 2 6.1 绝对最大额定值 5 7.5.1 保护概述 2 6.2 ESD 等级 5 7.5.2 初级保护 2 6.3 建议运行条件 6 7.5.3 电芯开路保护 2 6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 2 6.5 电源电流 7 7.6 器件电源模式 2 6.6 数字 I/O 7 7.6.1 电源模式概述 2 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 2 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 2 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 2 6.10 热敏电阻上拉电阻 10 8 应用和实施 2 6.10 热敏电阻上拉电阻 10 8 应用和实施 2
3 说明 1 7.4.11 ALERT 引脚运行. 20 4 器件比较表 3 7.4.12 低频振荡器 2° 5 引脚配置和功能 3 7.4.13 I²C 串行通信接口 2° 6 规格 5 7.5 保护子系统 2° 6.1 绝对最大额定值 5 7.5.1 保护概述 2° 6.2 ESD 等级 5 7.5.2 初级保护 2° 6.3 建议运行条件 6 7.5.3 电芯开路保护 2° 6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 2° 6.5 电源电流 7 7.6 器件电源模式 2° 6.6 数字 I/O 7 7.6.1 电源模式概述 2° 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 2° 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 2° 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 2° 6.10 热敏电阻上拉电阻 10 8 应用和实施 2°
4 器件比较表37.4.12 低频振荡器25 引脚配置和功能37.4.13 I²C 串行通信接口26 规格57.5 保护子系统226.1 绝对最大额定值57.5.1 保护概述26.2 ESD 等级57.5.2 初级保护26.3 建议运行条件67.5.3 电芯开路保护26.4 热性能信息 BQ7730767.5.4 诊断检查26.5 电源电流77.6 器件电源模式26.6 数字 I/O77.6.1 电源模式概述26.7 REGOUT LDO77.6.2 NORMAL 模式26.8 电压基准87.6.3 SHUTDOWN 模式26.9 电流检测器87.6.4 CONFIG_UPDATE 模式26.10 热敏电阻上拉电阻108 应用和实施2
5 引脚配置和功能 3 7.4.13 I²C 串行通信接口 2 6 规格 5 7.5 保护子系统 2 6.1 绝对最大额定值 5 7.5.1 保护概述 2 6.2 ESD 等级 5 7.5.2 初级保护 2 6.3 建议运行条件 6 7.5.3 电芯开路保护 2 6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 2 6.5 电源电流 7 7.6 器件电源模式 2 6.6 数字 I/O 7 7.6.1 电源模式概述 2 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 2 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 2 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 2 6.10 热敏电阻上拉电阻 10 8 应用和实施 26
6 规格57.5 保护子系统226.1 绝对最大额定值57.5.1 保护概述226.2 ESD 等级57.5.2 初级保护226.3 建议运行条件67.5.3 电芯开路保护236.4 热性能信息 BQ7730767.5.4 诊断检查236.5 电源电流77.6 器件电源模式236.6 数字 I/O77.6.1 电源模式概述236.7 REGOUT LDO77.6.2 NORMAL 模式246.8 电压基准87.6.3 SHUTDOWN 模式246.9 电流检测器87.6.4 CONFIG_UPDATE 模式266.10 热敏电阻上拉电阻108 应用和实施26
6.1 绝对最大额定值 5 7.5.1 保护概述 22 6.2 ESD 等级 5 7.5.2 初级保护 22 6.3 建议运行条件 6 7.5.3 电芯开路保护 25 6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 25 6.5 电源电流 7 7.6 器件电源模式 25 6.6 数字 I/O 7 7.6.1 电源模式概述 25 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 26 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 26 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 26 6.10 热敏电阻上拉电阻 10 8 应用和实施 26
6.2 ESD 等级 5 7.5.2 初级保护 22 6.3 建议运行条件 6 7.5.3 电芯开路保护 25 6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 25 6.5 电源电流 7 7.6 器件电源模式 25 6.6 数字 I/O 7 7.6.1 电源模式概述 25 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 26 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 26 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 26 6.10 热敏电阻上拉电阻 10 8 应用和实施 26
6.3 建议运行条件
6.4 热性能信息 BQ77307 6 7.5.4 诊断检查 23 6.5 电源电流 7 7.6 器件电源模式 23 6.6 数字 I/O 7 7.6.1 电源模式概述 23 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 24 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 24 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 26 6.10 热敏电阻上拉电阻 10 8 应用和实施 26
6.5 电源电流 7 7.6 器件电源模式 23 6.6 数字 I/O 7 7.6.1 电源模式概述 23 6.7 REGOUT LDO 7 7.6.2 NORMAL 模式 24 6.8 电压基准 8 7.6.3 SHUTDOWN 模式 24 6.9 电流检测器 8 7.6.4 CONFIG_UPDATE 模式 25 6.10 热敏电阻上拉电阻 10 8 应用和实施 26
6.6 数字 I/O
6.7 REGOUT LDO
6.8 电压基准
6.9 电流检测器8 7.6.4 CONFIG_UPDATE 模式
6.10 热敏电阻上拉电阻
6.11 硬件过热检测器
6.12 内部振荡器
6.13 充电和放电 FET 驱动器
6.14 保护子系统
6.15 时序要求 - I ² C 接口,100kHz 模式
6.16 时序要求 - I ² C 接口,400kHz 模式
6.17 时序图
6.18 典型特性
7 详细说明
7.1 概述
7.2 功能方框图
7.3 器件配置
7.3.1 命令和子命令
7.3.2 使用 OTP 或寄存器进行配置
7.3.3 器件安全性
7.4 器件硬件特性
7.4.1 电压保护子系统
7.4.2 电流保护子系统
7.4.3 未使用的 VC 引脚
7.4.4 内部温度保护
7.4.5 热敏电阻温度保护
7.4.6 保护 FET 驱动器 19 12 修订历史记录 39
7.4.7 电压基准
7.4.8 多路复用器

4 器件比较表

BQ77307xy 器件系列				
器件型号	支持的电芯数	REGOUT 状态		
BQ77307	7	启用,3.3V		
BQ77307xy ⁽¹⁾	2-7	1.8V 至 5.0V		

(1) 产品预发布

5 引脚配置和功能

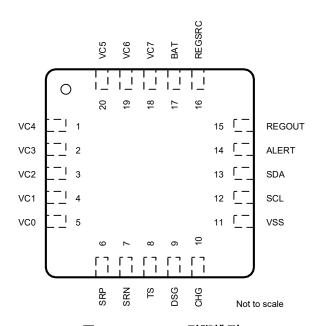


图 5-1. BQ77307 引脚排列

表 5-1. BQ77307 引脚功能

	引脚	1/0	₩ 20 i	Do M.C
编号	名称	l/O	类型	说明
1	VC4	ı	IA	电池组底部第四个电芯的检测电压输入引脚
2	VC3	I	IA	电池组底部第三个电芯的检测电压输入引脚
1	VC2	I	IA	电池组底部第二个电芯的检测电压输入引脚
2	VC1	I	IA	电池组底部第一个电芯的检测电压输入引脚
3	VC0	I	IA	电池组底部第一个电芯负极端子的检测电压输入引脚,并从 SHUTDOWN 状态唤醒
6	SRP	ı	IA	连接到内部电流保护子系统的模拟输入引脚,用于检测 SRP 和 SRN 之间的电压,其中 SRP 是检测电阻的顶部。充电电流会在 SRP 处产生相对于 SRN 的正电压。
7	SRN	ı	IA	连接到内部电流保护子系统的模拟输入引脚,用于检测 SRP 和 SRN 之间的小电压,其中 SRN 是检测电阻的底部。充电电流会在 SRP 处产生相对于 SRN 的正电压。
8	TS	I/O	I/OA	热敏电阻输入并从 SHUTDOWN 状态唤醒
9	DSG	0	OA	NMOS 放电 FET 驱动输出引脚
10	CHG	0	OA	NMOS 充电 FET 驱动输出引脚
11	VSS	_	Р	器件接地
12	SCL	I/O	I/OD	I ² C 串行通信总线时钟
13	SDA	I/O	I/OD	I ² C 串行通信总线数据
14	ALERT	0	OD	数字中断输出引脚
15	REGOUT	0	OA	LDO 输出,可编程为 1.8V、2.5V、3.0V、3.3V 或 5.0V
16	REGSRC	ı	IA	REGOUT LDO 的输入引脚,也用作 CHG 和 DSG FET 驱动器的电源。

Product Folder Links: BQ77307

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 5-1. BQ77307 引脚功能 (续)

	引脚 I/O		引脚 I/O 类型		**	说明
编号	名称	1/0	大生	τ ς συ		
17	BAT	ı	Р	主电源输入引脚		
18	VC7	ı	IA	电池组底部第七个电芯的检测电压输入引脚		
19	VC6	I	IA	电池组底部第六个电芯的检测电压输入引脚		
20	VC5	I	IA	电池组底部第五个电芯的检测电压输入引脚		

6 规格

6.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

说明	引脚	最小值	最大值	单位
输入电压范围,V _{IN(DC)} ⁽²⁾	BAT、REGSRC	VSS-0.3	VSS+40	V
短时输入电压范围,V _{IN(short)} ⁽²⁾	VC1 - VC7、BAT、REGSRC、CHG		VSS+45	V
直流输入电压范围,V _{IN(DC)}	ALERT, SCL, SDA	VSS-0.3	VSS+6	V
直流输入电压范围,V _{IN(DC)}	TS	VSS-0.3	2.1	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	SRP、SRN	VSS-0.3	2.1	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC7	VSS-0.3 和 VC6-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC6	VSS-0.3 和 VC5-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC5	VSS-0.3 和 VC4-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC4	VSS-0.3 和 VC3-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC3	VSS-0.3 和 VC2-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC2	VSS-0.3 和 VC1-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	VC1	VSS-0.3 和 VC0-0.3 的最 大值	VSS+40	V
直流输入电压范围,V _{IN(DC)}	VC0	VSS-0.3	VSS+6	V
直流输入电压范围,V _{IN(DC)} ⁽²⁾	CHG	VSS-30	VSS+40	V
输出电压范围,V _O	DSG	VSS-0.3	VSS+20	V
输出电压范围,V _O	REGOUT	VSS-0.3	VSS+6	V
结温,T _J		-65	150	°C
存储温度,T _{stg}		-65	150	°C

⁽¹⁾ 超出*绝对最大额定值* 的运行可能会对器件造成永久损坏。*绝对最大额定值* 并不表示器件在这些条件下或在*建议的工作条件* 以外的任何其他条件下能够正常运行。如果超出*建议工作条件*但在*绝对最大额定值*范围内,器件可能不会完全正常运行,这可能影响器件的可靠性、功能和性能,并缩短器件寿命。

6.2 ESD 等级

			值	单位
V _(ESD)	静电放电	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 标准,所有引脚 ⁽¹⁾	±1000	V
V _(ESD)	静电放电	充电器件模型 (CDM),符合 ANSI/ESDA/JEDEC JS-002 标准,所有引脚 ⁽²⁾	±250	V

(1) JEDEC 文档 JEP155 指出: 500V HBM 能够在标准 ESD 控制流程下安全生产。

(2) JEDEC 文档 JEP157 指出: 250V CDM 能够在标准 ESD 控制流程下安全生产。

提交文档反馈

⁽²⁾ 在器件的使用寿命内,所施加应力高于 V_{IN(DC)} 且低于 V_{IN(SHORT)} 的时间应限制在 100 小时以内。这些应力可能会在短暂的瞬态事件期间发生,但不应施加此范围内的直流电压。

6.3 建议运行条件

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非 另有说明)。

	参数	測试条件	最小值	典型值 最大值	单位
V _{BAT}	电源电压	BAT 引脚上的电压(正常运行)	3	38.5	V
V _{BAT(UVLO)}	欠压锁定电平	BAT 上导致器件复位的下降电压		2.5	٧
V _{WAKEONTS}	TS 唤醒电压	BAT 引脚上的电压在有效范围内	0.65	1.2	V
V _{WAKEONVC0}	VC0 唤醒电压	BAT 引脚上的电压在有效范围内	0.65	1.2	V
V _{IN}	输入电压范围	ALERT, SCL, SDA	0	5.5	V
V _{IN}	用于热敏电阻温度保护的输入电 压范围	TS	-0.2	1.8	V
V _{IN}	输入电压范围	SRP、SRN	-0.2	1.8	V
V _{IN}	输入电压范围(3)	V _{VC(0)}	-0.2	3.0	٧
V _{IN}	输入电压范围	$V_{VC(x)}$, $1 \le x \le 4$	V _{VC(x-1)} - 0.2 或 VSS - 0.2 的最 大值	V _{VC(x- 1)} +5.5 或 VSS + 38.5 的最小值	V
V _{IN}	输入电压范围	V _{VC(x)} , x≥5	V _{VC(x-1)} - 0.2 或 VSS + 2.0 的最 大值	V _{VC(x- 1)} +5.5 或 VSS + 38.5 的最小值	V
Vo	输出电压范围	CHG	-25	38.5	V
/ ₀	输出电压范围	DSG	-0.2	14	V
₹ _C	外部电芯输入电阻 ^{(2) (3)}		10	1000	Ω
C _C	外部电芯输入电容 ^{(2) (3)}		0.1	10	μF
Rf	外部电源滤波器电阻(BAT 引脚) ⁽³⁾		50	1000	Ω
C _f	外部电源滤波器电容(BAT 引脚) ⁽³⁾		1	40	μF
R _{filt}	检测电阻滤波器电阻(3)			100 200	Ω
PREGSRC	REGSRC 电容 ⁽³⁾		1		μF
₹ _{TS}	25°C 时的外部热敏电阻标称电阻 (103-AT)			10	kΩ,
r _{opr}	运行期间的结温 ⁽¹⁾		-40	110	°C

- 应限制器件内的功率耗散,以确保运行期间结温保持在规格范围内。
- (2) 外部电芯输入电阻乘以外部输入电容应限制在 200µs 或以下。
- 由设计指定

6.4 热性能信息 BQ77307

		BQ77307	
	热指标 ⁽¹⁾	RGR (QFN)	单位
		20 个引脚	
$R_{\theta JA}$	结至环境热阻	47.2	°C/W
$R_{\theta JC(top)}$	结至外壳(顶部)热阻	47.9	°C/W
R _{θJC(bottom)}	结至外壳(底部)热阻	8.3	°C/W
R _{θJB}	结至电路板热阻	23.4	°C/W
Ψ_{JT}	结至顶部特征参数	1.4	°C/W
Ψ_{JB}	结至电路板特征参数	23.4	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

6.5 电源电流

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
I _{SLEEP}	NORMAL 模式	NORMAL 模式,REGOUT = OFF, CHG = OFF,DSG = ON,无通信, Power:Normal:Voltage Time = 5 秒		6		μΑ
I _{SHUTDOWN}	SHUTDOWN 模式	所有模块均已断电,无保护,无通信		1	2	μΑ

6.6 数字 I/O

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	· 参数	測试条件	最小值	典型值	最大值	单位
V _{IH}	高电平输入	SCL, SDA	1.23		5.5	V
V _{IL}	低电平输入	SCL , SDA			0.53	V
V _{OL}	输出电压低位	ALERT、SCL、SDA、V _{BAT} ≥3V、I _{OL} = 5mA、10pF 负载			0.4	V
C _{IN}	输入电容 ⁽¹⁾	ALERT, SCL, SDA		2		pF
I _{LKG}	输入漏电流	ALERT、SCL、SDA,器件处于 SHUTDOWN 模式			1	μΑ

(1) 由设计指定

6.7 REGOUT LDO

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	测试条件	最小值	典型值	最大值	单位
V _{REGOUT_1} . 8_LOW	稳压器电压(标称 1.8V 设置)	V _{BAT} , V _{REGSRC} = 3.0V , I _{REGOUT} = 10mA	1.62	1.8	1.92	V
V _{REGOUT_1} .	稳压器电压(标称 1.8V 设置) ⁽¹⁾	V _{BAT} ≥ 3.0V , V _{REGSRC} ≥ 3.8V , I _{REGOUT} = 0mA 至 20mA	1.62	1.8	1.92	V
V _{REGOUT_2} . 5_LOW	稳压器电压(标称 2.5V 设置) ⁽¹⁾	V _{BAT} , V _{REGSRC} = 3.0V , I _{REGOUT} = 10mA	2.25	2.5	2.75	V
V _{REGOUT_2} .	稳压器电压(标称 2.5V 设置) ⁽¹⁾	V _{BAT} ≥ 3.0V , V _{REGSRC} ≥ 3.8V , I _{REGOUT} = 0mA 至 20mA	2.25	2.5	2.75	V
V _{REGOUT_3} .	稳压器电压(标称 3.0V 设置) ⁽¹⁾	V _{BAT} ≥ 3.0V , V _{REGSRC} ≥ 3.8V , I _{REGOUT} = 0mA 至 20mA	2.7	3.0	3.3	V
V _{REGOUT_3} .	稳压器电压(标称 3.3V 设置) ⁽¹⁾	V _{BAT} ≥ 3.0V , V _{REGSRC} ≥ 4.2V , I _{REGOUT} = 0mA 至 20mA	3	3.3	3.6	V
V _{REGOUT_5} .	稳压器电压(标称 5.0V 设置) ⁽¹⁾	V _{BAT} ≥ 3.0V , V _{REGSRC} ≥ 5.5V , I _{REGOUT} = 0mA 至 20mA	4.5	5.0	5.5	V
$\Delta V_{O(TEMP)}$	温度范围内的稳压器输出	AV _{REGOUT} 与 25°C、I _{REGOUT} = 20mA、 V _{BAT} = 3.0V、V _{REGSRC} = 5.5 V 且 V _{REGOUT} 设置为 3.3V 设置条件下 V _{REGOUT} 间的关系	±0.015%			按照℃
$\Delta V_{O(LINE)}$	线性调整率 ⁽¹⁾	当 V _{REGSRC} 范围为 4.2V 至 38.5V 且 V _{REGOUT} 设为标称 3.3V 设置时, ΔV _{REGOUT} 与 25°C、V _{BAT} = 3.0V、 V _{REGSRC} = 4.2V、I _{REGOUT} = 5mA 条件 下 V _{REGOUT} 间的关系	-1%		1%	
I _{SC}	内部短路电流限制	V _{REGOUT} = 0V	23		50	mA
C _{EXT}	外部电容器 REGOUT 至 VSS ⁽²⁾		1			μF

Product Folder Links: BQ77307

(1) 由特性和生产测试的组合指定。

(2) 由设计指定

6.8 电压基准

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非 另有说明)。

,	参数	測试条件	最小值	典型值	最大值	单位
电压基准 1						
V _(REF1)	内部基准电压 ⁽¹⁾	T _A = 25°C	1.1955	1.1962	1.1969	V
V _(REF1DRIFT)	内部基准电压漂移 ⁽¹⁾	T _A = -40°C 至 110°C		±29		PPM/°C
电压基准 2						
V _(REF2)	内部基准电压 ⁽²⁾	T _A = 25°C	1.226	1.227	1.229	V
V _(REF2DRIFT)	内部基准电压漂移 ⁽²⁾	T _A = -40°C 至 110°C		±52		PPM/°C

- V_(REF1) 用于电芯电压和热敏电阻阈值电压检测子系统。 V_(REF2) 用于 LDO 和电流保护子系统

6.9 电流检测器

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非 另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 1,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	186	271	355	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 2,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	670	794	921	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 3,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	1145	1317	1503	μV
$V_{CUR_DET_THR}$	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 4,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	1594	1838	2089	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 5,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	2056	2364	2676	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 6,正阈值(充电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	2516	2890	3276	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 7,正阈值(充电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	3000	3419	3851	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 8,正阈值(充电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	3460	3942	4443	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 9,正阈值(充电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	3893	4466	5045	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 10,正阈值(充电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	4386	4994	5627	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 1,正阈值(充电电流) ⁽¹⁾	$T_A = -40$ °C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	88	275	462	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 2,正阈值(充电电流) ⁽¹⁾	$T_A = -40$ °C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	581	794	978	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 3,正阈值(充电电流) ⁽¹⁾	$T_A = -40$ °C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	1050	1317	1537	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 4,正阈值(充电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	1527	1836	2106	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 5,正阈值(充电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	1974 年	2360	2711	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 6,正阈值(充电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	2483	2885	3290	μV

6.9 电流检测器 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

另有说明)。	参数	測试条件	最小值	典型值	最大值	单位
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 7,正阈值(充电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	2897	3412	3885	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 8,正阈值(充电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	3357	3933	4498	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 9,正阈值(充电电流) ⁽¹⁾	T_A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	3793	4458	5062	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 10,正阈值(充电电流) ⁽¹⁾	$T_A = -40^{\circ}$ C 至 110 $^{\circ}$ C。使用平均数据进行 测量以消除噪声的影响。	4261	4986	5654	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 1,负阈值(放电电流) ⁽¹⁾	T _A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-719	-635	-546	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设 置 = 2,负阈值(放电电流) ⁽¹⁾	T _A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-1234	-1118	-1005	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 3,负阈值(放电电流) ⁽¹⁾	T _A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-1736	-1605	-1469	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 4,负阈值(放电电流) ⁽¹⁾	$T_A = -20^{\circ}$ C 至 65° C。使用平均数据进行测量以消除噪声的影响。	-2262	-2088	-1917	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 5,负阈值(放电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-2794	-2579	-2354	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 6,负阈值(放电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	-3324	-3067	-2805	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 7,负阈值(放电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-3849	-3552	-3245	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 8,负阈值(放电电流) ⁽¹⁾	$T_A = -20$ °C 至 65 °C。使用平均数据进行测量以消除噪声的影响。	-4369	-4037	-3704	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 9,负阈值(放电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-4913	-4527	-4129	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 10,负阈值(放电电流) ⁽¹⁾	T_A = -20°C 至 65°C。使用平均数据进行测量以消除噪声的影响。	-5425	-5012	-4577	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 1,负阈值(放电电流) ⁽¹⁾	T_A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-862	-630	-369	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 2,负阈值(放电电流) ⁽¹⁾	T_A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-1340	-1113	-865	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 3,负阈值(放电电流) ⁽¹⁾	T_A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-1887	-1600	-1284	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 4,负阈值(放电电流) ⁽¹⁾	T_A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-2387	-2087	-1765	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 5,负阈值(放电电流) ⁽¹⁾	$T_A = -40$ °C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-2949	-2575	-2179	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 6,负阈值(放电电流) ⁽¹⁾	$T_A = -40$ °C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-3487	-3064	-2622	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 7,负阈值(放电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-3991	-3548	-3083	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 8,负阈值(放电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-4599	-4033	-3420	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 9,负阈值(放电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-5067	-4521	-3918	μV
V _{CUR_DET_THR}	电流检测电压阈值 (V _{SRP} – V _{SRN}),设置 = 10,负阈值(放电电流) ⁽¹⁾	T _A = -40°C 至 110°C。使用平均数据进行 测量以消除噪声的影响。	-5580	-5011	-4415	μV

Product Folder Links: BQ77307

提交文档反馈

6.9 电流检测器 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
t _{CUR_DET}	测量间隔			2.44		ms

(1) 由特性和生产测试的组合指定

6.10 热敏电阻上拉电阻

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

参数		測试条件	最小值	典型值	最大值	单位
R _(TS_PU)	25°C 时的内部上拉电 阻 ⁽¹⁾		19.75	20	20.25	kΩ
R _(TS_PU_DRIFT)	内部上拉电阻随温度 的变化 ^{(1) (2)}	对于 20kΩ 标称值,-20°C/+65°C 范围内变化 与 25°C 条件下值的关系	-36		28	Ω
R _(TS_PU_DRIFT)		对于 20kΩ 标称值,-40°C/+110°C 范围内变 化与 25°C 条件下值的关系	-53		98	Ω

- (1) 内部上拉电阻仅包括 REG18 内部 LDO 与保护子系统电压检测点之间的电阻。
- (2) 根据特征确定

6.11 硬件过热检测器

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
V _(OTSD)	硬件过热检测器阈值 ⁽¹⁾		118		132	°C

(1) 由设计指定

6.12 内部振荡器

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
低频振荡器						
f _{LFO}	工作频率			32.770		kHz
f _{LFOS(ERR})	频率漂移 ⁽¹⁾	25°C 时频率变化与值间的关系,T _A = – 20°C 至 +65°C。	-1.0%	±0.33%	1.0%	
f _{LFOS(ERR})	频率漂移 ⁽¹⁾	25°C 时频率变化与值间的关系,T _A = – 40°C 至 +110°C。	-1.6%	±0.67%	1.9%	
f _{LFO(FAIL)}	故障检测频率	如果频率降至低于该水平,则检测到振荡 器故障。	11	14.1	18	kHz

(1) 根据特征确定

6.13 充电和放电 FET 驱动器

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

20 10 30 75 7 0							
参数		测试条件	最小值	典型值	最大值	单位	
V _(FETON_DSG)	DSG 驱动器已启用	V _{REGSRC} ≥ 12V , C _L = 20nF	10.5	11.5	13	V	
V _(FETON_CHG)	CHG 驱动器已启用	V _{REGSRC} ≥ 12V , C _L = 20nF	10	11	12	V	
V _(FETON_LOBAT_DSG)	DSG 驱动器已启用	V _{REGSRC} < 12V , C _L = 20nF	V _{REGSRC} – 1.0		V _{REGSRC}	V	

Product Folder Links: BQ77307

6.13 充电和放电 FET 驱动器 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
V _(FETON_LOBAT_CHG)	CHG 驱动器已启用	V _{REGSRC} < 12V , C _L = 20nF	V _{REGSRC} – 1.75		V _{REGSRC}	V
t _(CHG_ON)	CHG FET 驱动器上升 时间	CHG C_L = 20nF, R_{GATE} = 100 Ω , V_{REGSRC} = 12 V ,0.5 V 至 5 V		50	85	μs
t _(DSG_ON)	DSG FET 驱动器上升 时间	DSG C_L = 20nF, R_{GATE} = 100 Ω , V_{REGSRC} = 12 V ,0.5 V 至 5 V		35	55	μs
t _(CHG_OFF)	CHG FET 驱动器下降 时间	CHG C_L = 20nF, R_{GATE} = 100 Ω , V_{REGSRC} = 12 V , $V_{(FETON_CHG)}$ 的 80% 至 20%		24	35	μs
t _(DSG_OFF)	DSG FET 驱动器下降 时间	DSG C_L = 20nF , R_{GATE} = 100 Ω , V_{REGSRC} = 12 V , $V_{(FETON_DSG)}$ 的 80% 至 20%		2	3	μs
I _(CHG_ON)	CHG FET 驱动器输出 电流	CHG 启用且引脚保持在 8V,V _{REGSRC} = 12V		1		mA
I _(DSG_ON)	DSG FET 驱动器输出 电流	DSG 启用且引脚保持在 8V,V _{REGSRC} = 12V		1.56		mA
R _(DSG_OFF)	DSG FET 驱动器关断 电阻	DSG 关断且引脚保持在 100mV		15	30	Ω
V _(CHG_DETECT)	CHG 检测器阈值	CHG 引脚电压上升	1.2		1.8	V
V _(CHG_DET_HYS)	CHG 检测器迟滞			0.95		V

6.14 保护子系统

Copyright © 2024 Texas Instruments Incorporated

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

,	参数	測试条件	最小值	典型值 最大值	单位
		0V < V _{VC(x)} - V _{VC(x-1)} < 4.5V , T _A = 25°C , 1 ≤ x ≤ 7 , 使用 10Ω 和 220nF 的 输入网络	-4	4	mV
V _(CV_ACC)	电芯过压 (COV) 和欠压 (CUV) 保护	$0V < V_{VC(x)} - V_{VC(x-1)} < 4.5V$, $T_A = -20$ °C 至 65 °C , $1 \le x \le 7$, 使用 10Ω 和 220 nF 的输入网络	-8	7	mV
	阈值电压精度 ⁽²⁾	$0V < V_{VC(x)} - V_{VC(x-1)} < 4.5V$, $T_A = -40$ °C 至 110°C ,1 ≤ x ≤ 7 ,使用 10Ω 和 220nF 的输入网络	-10	10	mV
		0V < V _{VC(x)} - V _{VC(x-1)} < 5.5V , T _A = -40°C 至 110°C , 1 ≤ x ≤ 7 , 使用 10Ω 和 220nF 的输入网络	-13	12	mV
V _(CV_DLY)	电芯过压 (COV) 和欠压 (CUV) 检测 延迟精度 ⁽¹⁾	延迟误差与标称延迟设置间的关系	-5%	5%	
V _(TS_ACC)	热敏电阻温度保护阈值精度 ⁽²⁾	阈值误差与标称设置间的关系,阈值根据 V _{TS} / V _{REG18} 设定。	-2%	2%	
V _(TS_DLY)	热敏电阻温度保护延迟精度 ⁽²⁾	延迟误差与标称设置间的关系	-5%	5%	
V _(TINT_ACC)	内部温度保护阈值精度 ⁽²⁾	阈值误差与标称设置间的关系,T _A = – 20°C 至 65°C	-5.8	5.0	°C
		阈值误差与标称设置间的关系,T _A = – 40°C 至 110°C	-7.8	5.3	°C

Product Folder Links: BQ77307

6.14 保护子系统 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值	典型值	最大值	单位
$V_{(SCD)}$	放电短路电压阈值范围	标称设置,阈值基于 V _{SRP} – V _{SRN}		-10, -20, -40, -60, -80, -100, -125, -150, -175, -200, -250, -300, -350, -400, -450, -500		mV
		-10mV 设置	-36%		22%	
V	放电短路电压阈值检测精度 ⁽²⁾	-20mV 设置	-19%		12%	
$V_{(SCD_ACC)}$	放电湿路电压阈值检测桶度 (**)	-40mV 设置	-14%		6%	
		设置 -60mV 至 -500 mV	-11%		6%	
		最快设置(具有 3mV 过驱)		8		μs
		最快设置(具有 25mV 过驱)		0.6		μs
		15μs 的设置(具有 3mV 过驱)		20	28	μs
		15μs 的设置(具有 25mV 过驱)			20	μs
		31μs 的设置(具有 25mV 过驱)	14		35	μs
		61μs 的设置(具有 25mV 过驱)	42		66	μs
$V_{(SCD_DLY)}$	放电短路检测延迟 ⁽¹⁾	122μs 的设置(具有 25mV 过驱)	102		130	μs
		244μs 的设置(具有 25mV 过驱)	218		258	μs
		488μs 的设置(具有 25mV 过驱)	452		510	μs
		977μs 的设置(具有 25mV 过驱)	920		1018	μs
		1953µs 的设置(具有 25mV 过驱)	1860		2034	μs
		3906μs 的设置(具有 25mV 过驱)	3735		4065	μs
		7797μs 的设置(具有 25mV 过驱)	7470		8112	μs
V _(OCC)	充电过流 (OCC) 电压阈值范围	标称设置,阈值基于 V _{SRP} – V _{SRN}		3mV 至 123mV (步长为 2mV)		mV
V _(OCC_ACC)	充电过流 (OCC) 电压阈值精度 ⁽²⁾	设置 3mV 至 19mV	-1.17		1.32	mV
V _(OCC_ACC)	充电过流 (OCC) 电压阈值精度 ⁽²⁾	设置 21mV 至 55mV	-1.68		2.99	mV
V _(OCC_ACC)	充电过流 (OCC) 电压阈值精度 ⁽²⁾	设置 57mV 至 123mV	-1.61		4.10	mV
V _(OCD)	放电过流(OCD1、OCD2)电压阈值 范围	标称设置,阈值基于 V _{SRP} – V _{SRN}		-4mV 至 -200mV (步长为 2mV)		mV
		设置 -4 mV 至 -18 mV	-1.23		0.84	mV
V	过流(OCD1、OCD2)检测电压阈值	设置 -20 mV 至 -56 mV	-2.84		1.59	mV
$V_{(OCD_ACC)}$	精度 (2)	设置 -58 mV 至 -100 mV	-2.15		2.58	mV
		设置 -102 mV 至 -200 mV	-2,86		4,19	mV

Product Folder Links: BQ77307

12 提交文档反馈

6.14 保护子系统 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

	参数	測试条件	最小值 典型值 最大	値 単位
		最快设置	0.46	ms
		标称设置,低范围	1.22ms 至 20.435m s,以 0.305ms 为步长	ms
过 V _(OC_DLY)	过流(OCC、OCD1、OCD2)检测 延迟(每个保护均具有独立的延迟设	标称设置,中低范围	22.875m s 至 176.595 ms,以 2.441ms 为步长	ms
	置)	标称设置,中高范围	181.475 ms 至 488.915 ms,以 4.883ms 为步长	ms
		标称设置,高范围	498.675 ms 至 1103.795 ms,以 9.766ms 为步长	ms
		最快设置	-0.35 0.	35 ms
	\t\tau\(\)	标称设置,低范围	-1.2 0.	90 ms
$V_{(OC_DLY)}$	过流(OCC、OCD1、OCD2)检测 延迟精度 ⁽¹⁾	标称设置,中低范围	-7.5	7.2 ms
		标称设置,中高范围	-20	20 ms
		标称设置,高范围	–45	45 ms

⁽¹⁾ 由设计指定

6.15 时序要求 - I²C 接口,100kHz 模式

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
f _{SCL}	时钟工作频率(1)	SCL 占空比 = 50%			100	kHz
t _{HD:STA}	启动条件保持时间 ⁽¹⁾		4.0			μs
t _{LOW}	SCL 时钟的低电平周期 ⁽¹⁾		4.7			μs
t _{HIGH}	SCL 时钟的高电平周期 ⁽¹⁾		4.0			μs
t _{SU:STA}	建立重复启动(1)		4.7			μs
t _{HD:DAT}	数据保持时间(SDA 输入) ⁽¹⁾		0			ns
t _{SU:DAT}	数据设置时间(SDA 输入) ⁽¹⁾		250			ns
t _r	时钟上升时间 ⁽¹⁾	10% 至 90%			1000	ns
t _f	时钟下降时间 ⁽¹⁾	90% 至 10%			300	ns
t _{SU:STO}	建立时间停止条件(1)		4.0			μs
t _{BUF}	停止和启动之间的总线空闲时间 ⁽¹⁾		4.7			μs

提交文档反馈

⁽²⁾ 由特性和生产测试的组合指定

6.15 时序要求 - I²C 接口,100kHz 模式 (续)

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非 另有说明)。

参数		測试条件	最小值	典型值 最大	值 单位
t _{RST}	I ² C 总线复位 ⁽¹⁾	如果在此期间内检测到 SCL 为低电平,则总线接口会复位	1.9	2	.1 s
R _{PULLUP}	上拉电阻器(1)	上拉电压轨≤5V	1.1		kΩ

(1) 由设计指定

6.16 时序要求 - I²C 接口, 400kHz 模式

所述典型值的条件是 T_A = 25°C 且 V_{BAT} = 25.9V,最小值/最大值的条件是 T_A = -40°C 至 110°C 且 V_{BAT} = 3V 至 38.5V(除非 另有说明)。

参数		測试条件	最小值 典型值 最大		最大值	单位
f _{SCL}	时钟工作频率(1)	SCL 占空比 = 50%			400	kHz
t _{HD:STA}	启动条件保持时间 ⁽¹⁾		0.6			μs
t _{LOW}	SCL 时钟的低电平周期 ⁽¹⁾		1.3			μs
t _{HIGH}	SCL 时钟的高电平周期 ⁽¹⁾		600			ns
t _{SU:STA}	建立重复启动(1)		600			ns
t _{HD:DAT}	数据保持时间(SDA 输入) ⁽¹⁾		0			ns
t _{SU:DAT}	数据设置时间(SDA 输入) ⁽¹⁾		100			ns
t _r	时钟上升时间 ⁽¹⁾	10% 至 90%			300	ns
t _f	时钟下降时间(1)	90% 至 10%			300	ns
t _{SU:STO}	建立时间停止条件(1)		0.6			μs
t _{BUF}	停止和启动之间的总线空闲时间 ⁽¹⁾		1.3			μs
t _{RST}	I ² C 总线复位 ⁽¹⁾	如果在此期间内检测到 SCL 为低电平,则 总线接口会复位	1.9		2.1	S
R _{PULLUP}	上拉电阻器 ⁽¹⁾	上拉电压轨 ≤ 5V	1.1			kΩ

(1) 由设计指定

6.17 时序图

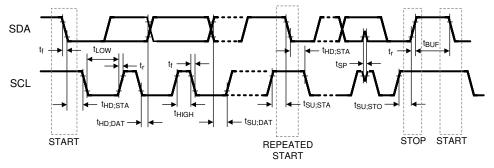


图 6-1. I²C 通信接口时序

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

6.18 典型特性

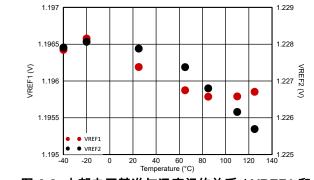


图 6-2. 内部电压基准与温度间的关系(VREF1 和 VREF2)

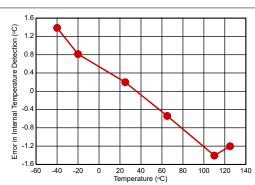


图 6-3. 内部温度保护误差与温度间的关系

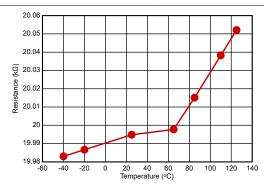


图 6-4. 热敏电阻上拉电阻与温度间的关系

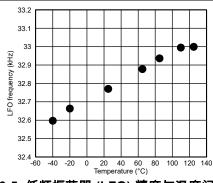


图 6-5. 低频振荡器 (LFO) 精度与温度间的关系

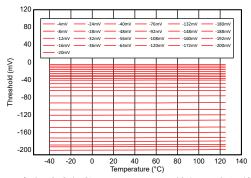


图 6-6. 放电过流保护 1 (OCD1) 阈值与温度间的关系

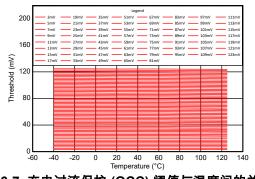


图 6-7. 充电过流保护 (OCC) 阈值与温度间的关系

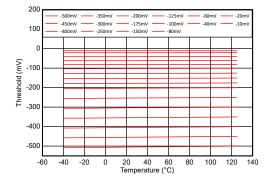


图 6-8. 放电短路保护 (SCD) 阈值与温度间的关系

Product Folder Links: BQ77307

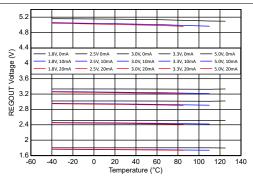
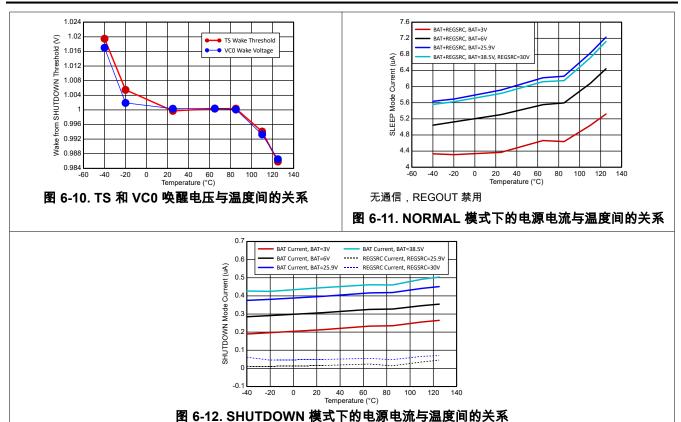
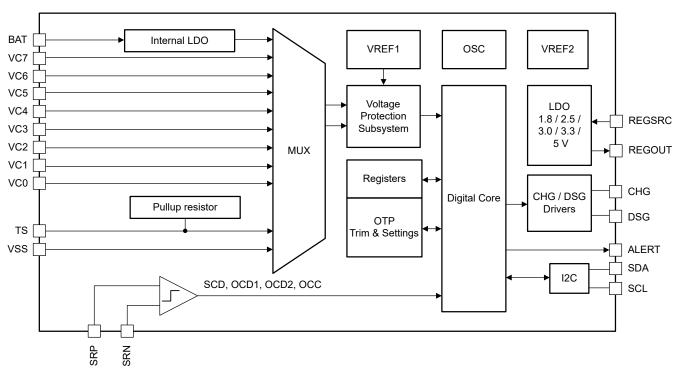



图 6-9. REGOUT 电压与温度和负载间的关系


7详细说明

7.1 概述

BQ77307 系列是一款高度集成且精确的初级或次级保护器,适用于 2 节至 7 节串联锂离子、锂聚合物、磷酸铁锂 (LFP) 和 LTO 电池包。每个器件都包含高精度电压、电流和温度保护,这些保护可以由该器件完全自主地触发和恢复,也可以在主机处理器的完全控制下进行。集成的 FET 驱动器用于驱动低侧充电和放电保护 NFET。该器件包含一个供外部系统使用的可编程 LDO,其电压可编程为 1.8V、2.5V、3.0V、3.3V 或 5.0V,并且能提供高达 20mA 的电流。

BQ77307 器件包括一次性可编程 (OTP) 存储器,TI 对其进行编程以配置器件操作设置。具有可选 CRC 和ALERT 中断输出的 400kHz I²C 通信接口支持与主机处理器进行通信,以读取状态信息。器件温度保护包括支持外部热敏电阻以及内部芯片过热保护。BQ77307 采用 20 引脚 QFN 封装

7.2 功能方框图

7.3 器件配置

7.3.1 命令和子命令

BQ77307 器件支持直接命令和子命令。使用 7 位命令地址访问直接命令,该地址从主机通过器件串行通信接口发送,并触发操作,或提供待写入器件的数据值,或指示器件向主机报告数据。子命令是使用 7 位命令地址空间间接访问的附加命令,并提供了块数据传输功能。有关该器件支持的命令和子命令的更多信息,请参阅 BQ77307 技术参考手册。

7.3.2 使用 OTP 或寄存器进行配置

BQ77307 器件包含寄存器,其值可从一次性可编程 (OTP) 存储器中自动加载。初始上电时,该器件将 OTP 设置加载到寄存器中,供器件在运行期间使用。OTP 设置由 TI 在制造过程中编程到器件中。当该器件处于 NORMAL模式时,寄存器值会被保留。如果该器件进入 SHUTDOWN 模式,则所有寄存器存储器都会被清除,再次上电时该器件将从 OTP 重新加载值。

7.3.3 器件安全性

BQ77307 器件包含两种安全模式:SEALED 和 FULLACCESS,它们可用于限制查看或更改设置的功能。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

- 在 SEALED 模式下,可以使用命令和子命令读取大多数数据和状态,但只能更改选定的设置。无法直接更改数据存储器设置。
- FULLACCESS 模式允许读取和修改所有器件设置。

可以在该器件运行时通过支持的命令和子命令修改该器件中的选定设置,但要修改所有设置,该器件必须进入 CONFIG_UPDATE 模式(请参阅 CONFIG_UPDATE Mode),这可以在更新设置时停止器件操作。更新完成 后,系统会使用新设置重新启动器件操作。CONFIG_UPDATE 模式仅在 FULLACCESS 模式下可用。

BQ77307 器件实现了一种用于在 SEALED 和 FULLACCESS 模式之间切换的密钥访问方案。从 SEALED 更改为 FULLACCESS 时,需要通过子命令向器件发送一组唯一的密钥。有关更多详细信息,请参阅 BQ77307 技术参考 手册。

7.4 器件硬件特性

7.4.1 电压保护子系统

BQ77307 器件集成了一个在差分电池电压之间进行多路复用的电压保护子系统、一个内部温度传感器和 TS 引脚,还可评估内部 1.8V LDO 电压和 VSS 电源轨以用于诊断。BQ77307 器件支持按串联配置(从 2 节串联到 7 节串联)排列的单个电芯的电芯电压保护。会评估两个相邻电芯输入引脚(例如 VC1-VC0、VC2-VC1 等)之间的每个差分电芯电压。电芯电压保护支持推荐的 -0.2V 至 5.5V 差分电压范围。

7.4.2 电流保护子系统

BQ77307 器件使用一个低侧检测电阻器监测电池包电流,该电阻器通过外部 RC 滤波器连接到 SRP 和 SRN 引脚,连接该滤波器时,充电电流将在 SRP 上产生相对于 SRN 的正电压。SRP 和 SRN 之间的差分电压与可编程电流保护阈值进行比较,以在超过阈值时生成保护警报和故障。该器件支持独立阈值,并且在放电短路 (SCD)、放电过流 1 和 2 (OCD1、OCD2)以及充电过流 (OCC)情况下,警报发生与故障置为有效之间存在延迟。

7.4.3 未使用的 VC 引脚

如果 BQ77307 器件用于 5 节以下串联电芯的系统,则必须使用特定电芯来连接实际电芯,如表 7-1 所示。未使用的电芯输入应在电路板上短接。该器件仅对那些被指定为实际电芯的电芯实现保护。

使用的电芯数量	CELL 连接	短路连接	
7	VC7-VC6、VC6-VC5、VC5-VC4、VC4- VC3、VC3-VC2、VC2-VC1、VC1-VC0	_	
6	VC7–VC6、VC6–VC5、VC5–VC4、VC3– VC2、VC2–VC1、VC1–VC0	VC4–VC3	
5	VC7–VC6、VC5–VC4、VC3–VC2、VC2– VC1、VC1–VC0	VC6–VC5、VC4–VC3	
4	VC7–VC6、VC5–VC4、VC3–VC2、VC1– VC0	VC6–VC5、VC4–VC3、VC2–VC1	
3	VC7–VC6、VC5–VC4、VC1–VC0	VC6–VC5、VC4–VC3、VC3–VC2、VC2- VC1	
2	VC7-VC6、VC1-VC0	VC6–VC5、VC5–VC4、VC4–VC3、VC3– VC2、VC2–VC1	

表 7-1. 电芯使用情况

未使用的电芯输入引脚应短接到相邻的电芯输入引脚,如适用于 6 节串联电芯系统的图 7-1 所示。

还需要注意的是,不同 VC 引脚支持的电压范围会因引脚而异。例如,引脚 VC5、VC6 和 VC7 只能在其引脚电压大于或等于 2V 时才支持准确的电芯电压保护。因此,如果使用顶部和底部电芯输入引脚实现 2 节串联电芯系统,当下方电芯电压降至 2V 以下时,可能无法正确评估上方电芯电压,因为此时 VC6 将低于 2V。

Product Folder Links: BQ77307

18

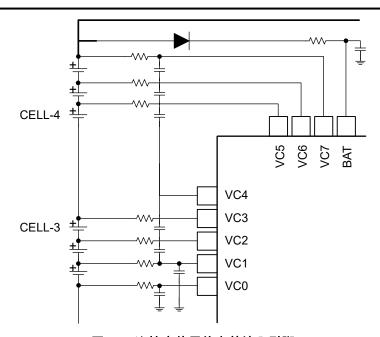


图 7-1. 连接未使用的电芯输入引脚

器件数据存储器必须配置为指定哪些电芯输入用于实际电芯。该器件使用此信息来禁用与未使用的输入相关的电芯电压保护。有关更多详细信息,请参阅 BQ77307 技术参考手册。

7.4.4 内部温度保护

BQ77307 器件集成了将其内部芯片温度(基于内部晶体管基极-发射极电压之间的差异)与可编程阈值进行比较的功能,以实现芯片过热保护。为响应这种保护,该器件可以配置为禁用 FET 并可选择进入 SHUTDOWN 模式。有关这方面的详细信息,请参阅 BQ77307 技术参考手册中的"内部过热保护"一节。

7.4.5 热敏电阻温度保护

BQ77307 器件使用 TS 引脚上的外部热敏电阻支持电池温度保护。该器件包含一个内部 20kΩ 上拉电阻器,用于在评估期间偏置热敏电阻。为了提供高精度评估,该器件使用与用于偏置热敏电阻上拉电阻的相同 1.8V 内部 LDO 电压评估电路,从而实现比例式运算。由于上拉电阻仅定期启用,因此建议将该节点的电容限制在 4nF 以下,以减轻上拉电阻偏置时不完全稳定的影响。

7.4.6 保护 FET 驱动器

BQ77307 集成了低侧 CHG 和 DSG FET 驱动器,这些驱动器可直接驱动低侧保护 NFET 晶体管。该器件支持串联和并联 FET 配置,当配置为串联 FET 配置时,如果一个 FET 驱动器打开而另一个 FET 驱动器关闭,可提供FET 体二极管保护。当体二极管保护已启用时,如果电池包在存在放电禁止故障条件时充电,则可以打开 DSG驱动器,以防止损坏 FET。同样,如果电池包在存在充电禁止故障条件时放电,则可以打开 CHG 驱动器。这些决策取决于对绝对值超过可编程体二极管阈值的电流的检测。

当未被命令阻止并且不存在相关故障(例如 UV、OTD、UTD、OCD1、OCD2、SCD 和选择诊断)时,DSG 引脚会被驱动为高电平,这种配置用于实现自主控制或用于体二极管保护。可以通过命令强制启动驱动器,但只有配置设置允许时,该命令才能生效。

DSG 驱动器旨在允许用户选择 DSG 引脚和 DSG FET 栅极之间的最佳串联电阻,以根据应用要求和 FET 特性选择实现所需的 FET 上升和下降时间。当 DSG FET 关断时,DSG 引脚会驱动为低电平,并会禁用所有放电过流保(OCD1、OCD2、SCD),以便更好地节省功耗。这些操作会在 DSG FET 开启时恢复运行。器件配置设置决定哪种保护将自主控制相应的 FET 驱动器。

仅当未被命令阻止并且不存在相关故障(OV、OTC、UTC、OCC、SCD 和选择诊断)时,CHG 引脚才会被驱动 为高电平,这种配置用于实现自主控制或用于体二极管保护。可以通过命令强制启动驱动器,但只有配置设置允 许时,该命令才能生效。关断 CHG 引脚不影响过流保护电路。CHG FET 驱动器在启用时主动将 CHG 引脚驱动 为高电平,并在禁用时主动将该引脚驱动为低电平,使其在大约 100µs 的时间内比 VSS 电压高大约 0.5V,然后

Product Folder Links: BQ77307

允许该引脚通过外部 CHG FET 栅源电阻器稳定到 PACK-电压。如果在禁用 CHG FET 的情况下将充电器连接到电池包,则根据器件的电气规格,CHG 引脚可降至比器件 VSS 低 25V 的电压。由于 CHG 会在 100μs 的时间间隔期间主动拉至低电平,CHG 驱动电路(由驱动器有效电阻、CHG 引脚和 CHG FET 栅极之间的任何串联电阻和 FET 栅极电容组成)的时间常数应保持远低于此水平。

7.4.7 电压基准

BQ77307 器件包含 VREF1 和 VREF2 两个电压基准,其中 VREF1 由电压保护子系统使用,其中包括电池过压和欠压保护、温度保护以及 VREF 和 VSS 诊断。VREF2 由电流保护子系统、集成 LDO 和内部振荡器使用。该器件包括对 VREF1 和 VREF2 的诊断检查,这样,如果两个电压的比值变化超出允许的范围,则会触发诊断警报或故障(如果通过设置启用)。

7.4.8 多路复用器

多路复用器将各种信号连接到电压保护子系统,其中包括各个电芯差分电压引脚、片上温度传感器、偏置的热敏电阻引脚、内部 1.8V LDO 电压和 VSS 引脚电压。多路复用器输入电路经过定制,可支持每个特定输入所需的电压范围和电平。

7.4.9 LDO

BQ77307 器件包含一个集成的 1.8V LDO (REG18),可为器件的内部电路和数字逻辑提供 1.8V 的稳压电源电压。该 LDO 的电源电流来自 BAT 引脚。

该器件还集成了可编程 LDO (REGOUT),用于主机处理器或外部收发器电路等外部电路。REGOUT LDO 从REGSRC 引脚获取输入,该引脚通常需要连接到电池组顶部,或者 REGSRC 电压可由系统中的单独直流/直流转换器生成。如果热条件允许,REGOUT LDO 可提供高达 20mA 的输出电流。

根据 OTP 配置,REGOUT LDO 可以编程为在器件每次退出 SHUTDOWN 模式时保持禁用状态或自动上电。通过修改配置设置,可以将 LDO 输出电压编程为 1.8V、2.5V、3.0V、3.3V 或 5.0V。当 REGOUT LDO 处于禁用状态并且器件处于 NORMAL 模式时,其输出通过约为 2.5kΩ 的内部电阻拉至 VSS。如果 LDO 根据待供电的 OTP 设置进行配置,则在以后每次上电时,器件将自主加载 OTP 设置并按照配置启用 LDO,而无需先进行通信。

BQ77307 可在高达 110°C 的裸片温度下正常运行,因此如果裸片温度超过该水平,系统设计必须避免从REGOUT LDO 汲取过多电流。例如,当电池包电压为 22.5V,并且 REGOUT 编程为 2.5V 输出电压时,该器件将在提供 20mA 负载电流时耗散约 400mW。然后,可以使用封装热阻来根据预期的最高环境温度计算最终的芯片温度。如果这超出了器件的额定温度范围,则可能需要在系统中限制负载电流。

BQ77307 包括一个芯片温度监测器,该监测器可以检测芯片温度是否超过约 120°C。如果发生这种情况,则会禁用 REGOUT LDO,并且根据配置设置,器件还将进入 SHUTDOWN 模式。如果 REGOUT LDO 因过热而被禁用(但器件未关断),则当芯片温度降至阈值以下时,REGOUT LDO 将再次自动上电。

7.4.10 独立接口与主机接口

BQ77307 可以配置为在完全独立的模式下运行,系统中无需任何主机处理器,或者与主机处理器一起运行。如果处于独立模式,该器件可以监测条件,根据阈值设置控制 FET,并在条件允许时恢复 FET,所有这些都无需与外部处理器进行任何交互。如果存在主机处理器,该器件仍可配置为完全自主运行,同时主机处理器可以根据需要读取状态信息并进行控制。或者,该器件可以配置为手动主机控制,以便该器件可以监测并在发生保护警报或故障时提供标志,但将依靠主机禁用 FET。在独立模式下使用该器件时,需要 TI 将所有设置编程到 OTP 中。这仅适用于涉及较大发货量的情况。有关此选项的信息,请与 TI 销售代表联系。

BQ77307 还可以通过主机处理器进行全面配置,并通过串行通信接口将所有设置写入器件的内部寄存器,无需任何 OTP 编程。使用这种方法时,每次器件复位或进入 SHUTDOWN 模式并重新启动时,都必须从主机重新加载设置。

7.4.11 ALERT 引脚运行

20

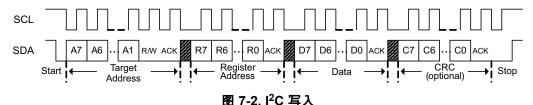
BQ77307 包含在 ALERT 引脚上生成警报信号的功能,该信号可用作主机处理器的中断。ALERT 引脚是一个开漏引脚,每当生成警报信号时,器件都会将该引脚拉低。警报功能包含一个可编程掩码,允许客户决定哪个标志或事件可以触发警报。所选的警报标志将保持锁存,直到主机处理器读取其状态并清除触发的报警位。可以在现场

<u>提交文档反馈</u> Copyright © 2024 Texas Instruments Incorporated

操作期间更改警报屏蔽,以屏蔽或取消屏蔽各个标志以防生成警报信号。除了锁存版本之外,该器件还提供每个标志的未锁存瞬时值。有关此功能的更多详细信息,请参阅 BQ77307 技术参考手册。

7.4.12 低频振荡器

BQ77307 中的低频振荡器 (LFO) 在 NORMAL 模式下持续运行。LFO 在 NORMAL 模式下以大约 32.768kHz 的 频率运行。LFO 在制造过程中进行了调整,以在整个温度范围内满足指定的精度。


7.4.13 I²C 串行通信接口

BQ77307 器件中的 I²C 串行通信接口用作目标器件,支持高达 400kHz 的速率和可选的 CRC 检查。默认情况下,BQ77307 最初将在由 TI 出厂编程的 OTP 设置确定的模式中上电。在 CONFIG_UPDATE 模式下,主机可以更改 CRC 模式设置,然后新的设置将在退出 CONFIG_UPDATE 模式时生效。

 I^2C 器件地址(作为包括目标器件地址和 R/W 位在内的 8 位值)默认设置为 0x10(写入)或 0x11(读取),该地址也可以通过配置设置进行更改。

通信接口包括可编程超时功能,在发生启用的超时时,内部 I²C 总线逻辑会复位。*BQ77307 技术参考手册* 对此进行了详细介绍。

I²C 写入事务如 图 7-2 所示。通过在停止之前发送额外的数据字节来允许进行块写入。I²C 逻辑将在每个数据字节后自动递增寄存器地址。阴影区域展示了器件什么时候可能进行时钟延展。

CRC 校验通过设置一个数据存储器位来启用。启用时,可以通过以下方式来计算 CRC:

- 请注意, CRC 在每个数据字节后和每次停止后都会复位。
- 在单字节写入事务中,会根据目标器件地址、寄存器地址和数据来计算 CRC。
- 在块写入事务中,会根据目标器件地址、寄存器地址和数据来计算第一个数据字节的 CRC。后续数据字节的 CRC 仅根据数据字节来计算。

CRC 多项式为 $x^8 + x^2 + x + 1$, 初始值为 0。

当目标器件检测到无效 CRC 时,I²C 目标器件将不确认 CRC,从而使 I²C 目标器件进入空闲状态。

图 7-3 展示了使用重复启动的读取事务。阴影区域展示了器件什么时候可能进行时钟延展。

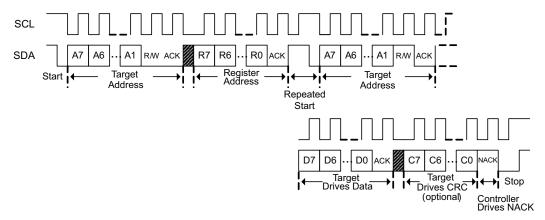


图 7-3. 使用重复启动的 I²C 读取

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

图 7-4 显示了一个未使用重复启动的读取事务(例如在硬件中不可用时)。对于块读取,控制器确认除最后一个 数据字节之外的每个数据字节,并继续为接口提供时钟。I²C 块将在每个数据字节后自动递增寄存器地址。阴影区 域展示了器件什么时候可能进行时钟延展。

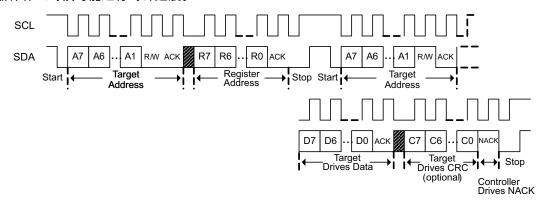


图 7-4. 不使用重复启动的 I²C 读取

启用时,可以通过以下方式来计算读取事务的 CRC:

- 请注意,CRC 在每个数据字节后和每次停止后都会复位。
- 在使用重复启动的单字节读取事务中,CRC 是从第一个启动开始计算的,因此将包含目标器件地址、寄存器地 址、设置了读取位的目标器件地址以及数据字节。
- 在初始寄存器地址后使用停止的单字节读取事务中,CRC 会在停止后复位,因此将仅包含设置了读取位的目标 器件地址和数据字节。
- 在使用重复启动的块读取事务中,第一个数据字节的 CRC 是从第一个启动开始计算的,并将包含目标器件 地址、寄存器地址、设置了读取位的目标器件地址以及数据字节。后续数据字节的 CRC 仅根据数据字节来计
- 在初始寄存器地址后使用停止的块读取事务中,CRC 会在停止后复位,因此将仅包含设置了读取位的目标器件 地址和第一个数据字节。后续数据字节的 CRC 仅根据数据字节来计算。

CRC 多项式为 $x^8 + x^2 + x + 1$,初始值为 0。

当控制器检测到无效 CRC 时,I²C 控制器将不确认 CRC,从而使 I²C 目标器件进入空闲状态。

有关更多信息,请参阅 BQ77307 技术参考手册。

7.5 保护子系统

7.5.1 保护概述

BQ77307 中集成了一个包含丰富初级保护功能的子系统,该系统可以监控各种参数、启动保护动作并根据条件自 主恢复。该器件还具有广泛的灵活性,可配置为监控和启动保护措施,但恢复由主机处理器控制;或者仅在运行 需要保护措施时监控和提醒主机处理器,但动作和恢复完全由主机处理器控制。

该保护子系统包括一套可单独启用和配置的单项保护,包括电芯欠压、过压和充电过流保护、两种独立的放电过 流保护、放电短路电流保护、电芯充放电过热和欠温保护、内部芯片过热保护和主机处理器通信看门狗超时保护 (适用于希望主机处理器保持激活状态的系统)。该器件集成了用于低侧 CHG 和 DSG 保护 FET 的 NFET 驱 动器,这些驱动器可配置为串联或并联配置,并在采用串联配置时提供体二极管保护。

7.5.2 初级保护

BQ77307 集成了广泛的电池管理保护套件,不仅能启用单项保护,还能选择哪些保护会对 FET 进行自主控制。 有关每种保护功能的详细说明,请参阅 BQ77307 技术参考手册。主要保护特性包括:

- 电芯欠压保护
- 电芯过压保护
- 电芯开路保护
- 充电过流保护

22

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

- 放电过流保护(两级)
- 放电短路保护
- 电流保护锁存器
- 充电欠温保护
- 放电欠温保护
- 充电过热保护
- 放电过热保护
- 内部过温保护
- 主机看门狗故障保护

该器件还包含附加诊断检查,这些诊断检查也可以根据配置设置实现 FET 的自主控制。

7.5.3 电芯开路保护

BQ77307 器件支持检测电池包中的电芯与包含 BQ77307 器件的 PCB 的电芯附件之间的连接是否断开。如果不 进行此项检查,BQ77307 器件的电芯输入引脚上的电压可能会在板级电容器上持续一段时间,从而导致电压读数 不正确。BQ77307 器件中的电芯开路检测通过以可编程间隔启用从每节电芯到 VSS 的小电流源来运行。如果电 芯输入引脚由于开路情况而处于悬空状态,该电流将使电容放电,从而导致该引脚上的电压缓慢下降。这种电压 下降最终会在特定电芯及其上方的电芯上触发保护故障。

电芯开路电流将按照配置寄存器设置的周期间隔启用。这基于 55μA 的典型电流水平提供了平均电流可编程性, 其范围为约 10pA 至约 10μA。有关更多详细信息,请参阅 *BQ77307 技术参考手册*。

电芯开路检查会造成电芯不均衡,因此应选择适当的设置。

7.5.4 诊断检查

BQ77307 包含多个用于诊断目的的检查。其中一些将触发保护故障,但它们通常不包括具有可编程延迟周期的警 报阶段,而是会在检测到故障时立即触发故障。它们并非都可以自主恢复,但有些可以使用主机发送的子命令手 动恢复。有关每个诊断的更多详细信息,请参阅 BQ77307 技术参考手册。

VREF1 与 VREF2 检查 - 该器件会定期比较两个内部基准电压之间的比值,如果结果超出可接受的范围,则可以 触发故障。

VSS 检查 - 该器件还会定期检查 VSS 电压并将结果值与预期值进行比较,以实现 VSSF 诊断保护。

REGOUT 检查 - 如果检测到错误,例如稳压器处于短路电流限制状态,REGOUT LDO 会生成标志。检测到错误 时,该器件会触发 REGOUT 诊断故障,并可以根据设置禁用 FET。

LFO 完整性检查-该器件集成了一个特殊的硬件模块,用于监控 LFO 是否停止振荡或频率相对于其预期值显著下 降。如果检测到这种情况,该器件会立即切换到 SHUTDOWN 模式。

内部出厂调整检查-该器件会在初始上电时或任何完全复位后检查器件内的数字调整和设置信息。如果在此检查 过程中检测到错误,该器件将立即切换到 SHUTDOWN 模式。

硬件过热检测器-该器件集成了一个硬件过热检测电路,用于确定芯片温度何时超过大约 120°C 的过高温度。如 果该检测器触发,该器件将根据配置设置自动进入 SHUTDOWN 模式的序列。

7.6 器件电源模式

7.6.1 电源模式概述

Copyright © 2024 Texas Instruments Incorporated

BQ77307 器件支持正常工作模式和完全关断模式,该器件能够根据设置自主地从 NORMAL 模式转换到 SHUTDOWN 模式。

• NORMAL 模式:在此模式下,该器件会评估系统电流、电芯电压、内部和热敏电阻温度以及各种诊断检查 按照配置运行保护,并提供中断和状态更新。电池保护处于启用状态,并且 FET 驱动器通常处于启用状态(在 没有任何保护故障的情况下)。

 SHUTDOWN 模式:该器件完全禁用(包括内部 1.8V 和 REGOUT LDO), CHG 和 DSG FET 都禁用,并且 所有电池保护均禁用。这是该器件的最低功耗状态,可用于运输或长期存储。在 SHUTDOWN 模式下,所有未由 TI 写入 OTP 的寄存器设置都会丢失。

该器件还包含 CONFIG_UPDATE 模式,用于参数更新。运行模式之间的转换如 BQ77307 电源模式中所示。

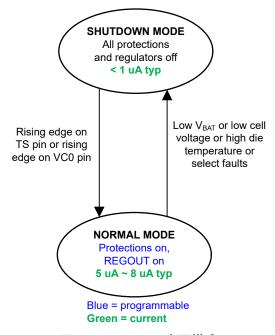


图 7-5. BQ77307 电源模式

7.6.2 NORMAL 模式

在 NORMAL 模式下,BQ77307 会持续评估电芯电压、电池包电流和热敏电阻以及内部芯片温度,实现所有已启用的电池保护并根据编程设置控制 FET 驱动器。

如果电池组电压或最小电芯电压降至可编程阈值以下,或者检测到 TS 引脚热敏电阻温度高于可编程阈值或检测到 芯片温度过高,则器件将持续保持此模式,除非它自动进入 SHUTDOWN 模式。

7.6.3 SHUTDOWN 模式

24

SHUTDOWN 模式是 BQ77307 的最低功率模式,可用于运输或长期储存。在此模式下,器件会丢失所有寄存器状态信息,内部逻辑断电,保护 FET 全部被禁用,因此电池包端子上不提供电压。所有保护均被禁用,并且不支持任何通信。当该器件退出 SHUTDOWN 模式时,BQ77307 会读取存储在 OTP 中的参数(由 TI 编程),从而有效地设定设置默认值。器件上电后,如果器件默认未处于 SEALED 状态,则可以通过主机写入器件寄存器更改设置。

该器件可以配置为根据电池组顶部最小电压、最小电芯电压、最大 TS 热敏电阻温度或过高芯片温度自动进入 SHUTDOWN 模式。基于电芯电压的关断不适用于不用于实际电芯的电芯输入引脚。

当从 SHUTDOWN 模式唤醒时,该器件需要大约 10ms,才能使内部电路上电,从 OTP 存储器加载设置,对与启用的保护相关的条件进行初始评估,然后在设置和条件允许的情况下启用 FET。

BQ77307 集成了硬件过热检测电路,该电路可以确定芯片温度何时超过约 120°C 的过高温度。如果触发了该检测器,该器件会根据配置设置自动开始进入 SHUTDOWN 的序列。

如果在 TS 或 VC0 引脚上施加高于大约 1.2V 的电平,BQ77307 将从 SHUTDOWN 模式唤醒。如果关断序列已启动,但器件检测到存在唤醒条件(检测到 TS 或 VCO 引脚电压为高电平),则器件会保持在"软关断"状态,直到唤醒条件被移除(即必须检测到 TS 和 VCO 引脚电压为低电平)。在"软关断"状态中,FET 被禁用,并且保护被禁用。当条件允许器件继续进入 SHUTDOWN 模式时,器件会退出"软关断"。主机可以通过命令中止进入SHUTDOWN 模式,并且器件会在完全复位后重新启动操作。

提交文档反馈
Product Folder Links: BQ77307

Copyright © 2024 Texas Instruments Incorporated

7.6.4 CONFIG_UPDATE 模式

如果 BQ77307 器件尚未通过 TI 编程默认设为 SEALED 状态,该器件会使用特殊的 CONFIG_UPDATE 模式来更改数据存储器设置。如果在正常保护功能运行期间更改了数据存储器设置,当逻辑使用的设置在运行过程中发生更改时,可能会导致运行异常或不良的后果。通常只应在客户生产线上或在离线条件下更改数据存储器设置,例如从 SHUTDOWN 上电后立即进行更改。

当处于 CONFIG_UPDATE 模式时,器件会停止所有保护监控。然后,主机可以更改数据存储器设置。更改完成后,主机发送命令来退出 CONFIG_UPDATE 模式,此时该器件使用新的数据存储器设置重新启动正常运行。有关更多信息,请参阅 BQ77307 技术参考手册。

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: BQ77307

提交文档反馈

8 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格,TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

8.1 应用信息

BQ77307 器件可与 2-7 节串联电池包配合使用,支持 3V 至 38.5V 的电池组顶部电压。为了设计和实现一组针对特定电池包的完整参数,在开发期间,客户可以使用 Battery Management Studio (bqStudio),这是一个安装在 PC 上的图形用户界面工具。借助 bqStudio,在了解各种系统参数,例如用于保护的故障触发阈值、某些操作功能的启用或禁用、电芯配置等,便可在开发过程中根据特定的应用要求来配置器件。这会产生设置的"黄金映像",然后可以将其编程到器件寄存器中,或者可以由 TI 编程到器件中。

8.2 典型应用

BQ77307 7 节串联电芯典型实现方式(简化原理图)展示了 7 节串联电池包的简化应用原理图,其中将BQ77307 用作初级保护器,与主机微控制器和通信收发器一起使用。该配置使用串联的低侧 CHG 和 DSG FET。实现中需要考虑的几个要点如下:

- 建议在 BAT 引脚处连接一个串联二极管并在该引脚与 VSS 之间连接一个电容器。当发生电池包短路时,这些元件允许器件继续工作一小段时间,这可能导致电池组顶部电压降至约 0V。在这种情况下,二极管会防止BAT 引脚随着电池组被拉低,并且器件将继续运行,从电容器中汲取电流。通常,只需要在短时间内运行,直到该器件检测到短路事件并禁用 DSG FET。如果需要低压电池包运行,则可以使用肖特基二极管,否则可以使用传统二极管。
- FET CHG 和 DSG 驱动器使用 REGSRC 引脚作为其电源,因此用户可能还希望在栈顶和 REGSRC 引脚之间添加一个二极管,类似于用于 BAT 引脚的二极管。如果在电池组顶部与 REGSRC 引脚之间串联了任何电阻 (> 1Ω),建议在 REGSRC 引脚与 VSS 之间添加一个 1μF 电容器。REGSRC 引脚可以短接到 BAT 引脚并使用单个二极管,但由于 REGOUT 稳压器从 REGSRC 引脚汲取的负载增加,这可能会导致 BAT 引脚电压在短路事件期间下降得更快。
- VC0 至 VC4 引脚上的建议最小电压向下扩展至 –0.2V,而 VC5、VC6 和 VC7 引脚上的建议最小电压相对于 VSS 限制为 2.0V。该限制的存在是为了确保电芯电压保护的指定精度。
- TI 建议在 SRP 和 SRN 引脚上串联 100Ω 电阻器,并在这些引脚之间使用具有 100nF 和可选的 100pF 差分滤 波电容以进行滤波。这些元件以及检测电阻到引脚的布线应尽可能地缩短并完全对称,同时建议所有元件与器件保持在 PCB 的同一侧。从引脚连接到 VSS 的电容器可以对到达引脚的共模瞬变进行滤波,但它们也可能对电流保护性能产生轻微影响。
- 连接在检测电阻与 SRP 和 SRN 引脚之间的滤波器网络会引入模拟滤波器延迟,当需要快速电流保护时,例如确定在 FET 禁用之前的放电短路 (SCD) 时间,这一点非常重要。如果此网络引入的延迟太长,则可以减小电阻和电容值。这将需要权衡提供较少的高频分量模拟滤波。
- 由于热敏电阻通常与电芯相连,并且可能需要长导线连接回器件,因此在热敏电阻引脚和器件 VSS 之间添加一个电容器可能会有所帮助。但是,切勿使用过大的电容值,因为当热敏电阻发生偏置并进行定期检查时,这会影响稳定时间。建议将外部电容值保持在 7.5nF 以下。

Product Folder Links: BQ77307

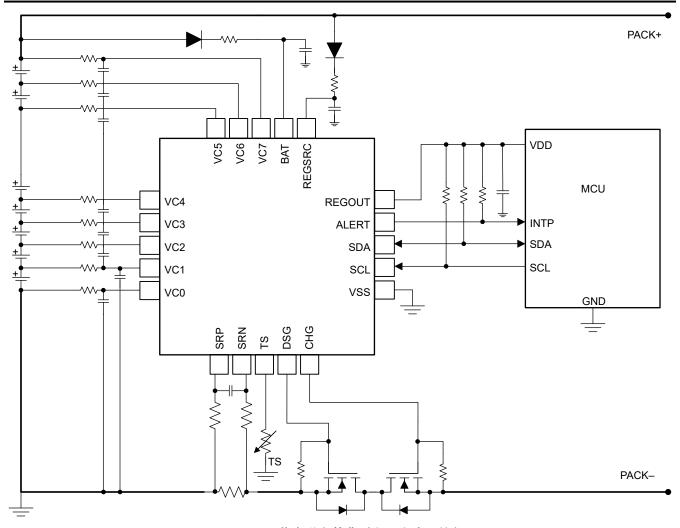


图 8-1. BQ77307 7 节串联电芯典型实现方式(简化原理图)

下面展示了 7 节串联电池包基于 BQ77307 的基本监测器电路的完整原理图。节 10.2 显示了该设计的电路板布局布线。

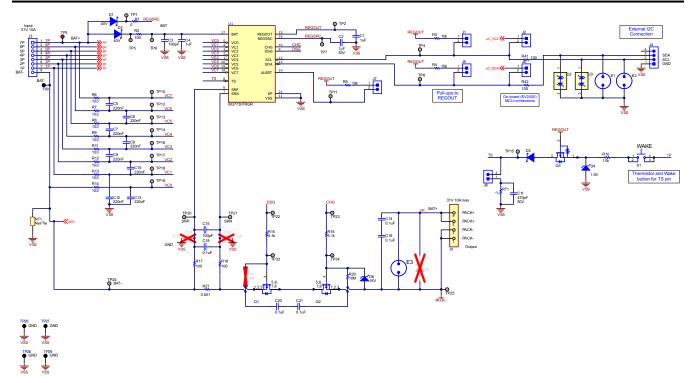


图 8-2. BQ77307 7 节串联电芯原理图 - 监测器

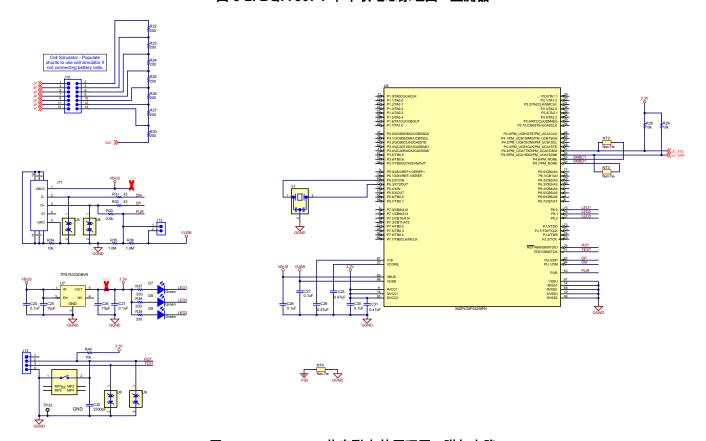


图 8-3. BQ77307 7 节串联电芯原理图 - 附加电路

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

8.2.1 设计要求

表 8-1. BQ77307 设计要求

示例值	
17.5V	
2.5V	
7	
1mΩ	
是	
29.75V	
6.0A	
40.0A	
由 TI 编程	
串联 FET 配置、器件监控、在发生故障时禁用 FET、自主恢复	
4.30V	
375ms	
100mV	
2.5V	
141ms	
100mV	
80mV(对应于标称 80A,基于 1mΩ 检测电阻)	
45 至 60µs	
10ms	
56mV(对应于标称 56A,基于 1mΩ 检测电阻)	
81ms	
8mV(对应于标称 8A,基于 1mΩ 检测电阻)	
159.2ms	
设置 = 48(相当于大约 60°C)	
2 秒	
代码 = 55(相当于约 55°C),持续 2 秒	
设置 = 72(相当于大约 45°C)	
2 秒	
代码 = 82(相当于约 40°C),持续 2 秒	
设置 = 197(相当于大约 -20℃)	
8秒	
设置 = 174(相当于约 -10℃),持续 2 秒	
设置 = 147(相当于大约 0℃)	
5秒	
¹ 延迟 5 秒 ¹ 恢复 代码 = 134(相当于约 5°C),持续 2 秒	
5 秒	
用于报警中断功能	
启用且具有 3.3V 输出	

8.2.2 详细设计过程

确定串联电芯节数。

- 该值取决于电芯化学成分以及系统的负载要求。例如,要使用电芯最小电压为 3V 的 Li-CO₂ 型电池来支持 12V 的最小电池电压,至少需要 4 节串联电芯。
- 有关正确的电芯连接,请参阅节 7.4.3。
- 保护 FET 选择和配置
 - BQ77307 器件专为与低侧 NFET 保护配合使用而设计
 - ── 应为串联 FET 和并联 FET 选择相应的配置,可能需要针对充电方向和放电方向选择不同的 FET。
 - 这些 FET 的额定性能应符合以下要求:
 - 最大电压,该值应为每节串联电芯大约 5V(直流)至 10V(峰值)。
 - 最大电流,应根据最大直流电流和最大瞬态电流计算并留有一定的裕度。
 - 最大功率损耗,其可能是 FET、FET 封装和 PCB 设计的 RDS(ON) 额定值的一个因素。
- 检测电阻选型
 - 所选电阻值应当尽可能扩大 SCD、OCD 和 OCC 保护的输入范围,但不超过绝对最大额定值,并避免电阻器内产生过多热量。
 - 使用正常的最大充电或放电电流时,检测电阻最大值等于 200mV/40.0A = 5mΩ。
 - 假设短路放电电流为 80A,建议的最大 SRP、SRN 电压约为 0.75V,并且最大 SCD 阈值为 500mV,则检测电阻最大值应低于 $500\text{mV}/80\text{A} = 6.25\text{m}\Omega$ 。
 - 此外,还应考虑进一步的容差分析(值容差、温度变化等)和 PCB 设计裕度,因此 1mΩ 的检测电阻适合 50ppm 温度系数和 1W 额定功率。
- 选择的 REGOUT 用于为外部主机处理器提供电源,并为 I²C 总线和 ALERT 引脚提供上拉电源,而输出电压 选择为 3.3V。
 - 应在 REGOUT 引脚处放置一个 1μF 或更大的电容器。
 - REGOUT 从 REGSRC 引脚汲取其输入电流。此引脚通过串联二极管和 10Ω 电阻器连接到 PACK+,而 1μF 电容器连接到位于 REGSRC 引脚的 VSS。

8.2.3 应用性能图

下面的示波器图示例展示了器件对放电短路 (SCD) 事件和后续保护的响应。该器件示例配置为 SCD 阈值等于 10mV,SCD 延迟为 0μ s 至 15μ s。短路通过 $1\text{m}\Omega$ 检测电阻来施加。SRP 和 SRN 引脚上的输入滤波器网络由 100Ω 电阻器和 100nF 差分电容器组成,因此会产生 20μ s 的时间常数。AlarmStatus() 中的 [SSA] 位会导致 ALERT 引脚下降,这会在触发安全状态并禁用 DSG 驱动器后大约 15μ s 到 30μ s 之间发生。该电路在 DSG 引脚和 DSG FET 栅极之间包含一个 $5.1k\Omega$ 电阻器。使用 SRN-SRP 引脚上的差分电压显示负载电流,其中包括 RC 延迟与检测电阻上电压间的关系

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: BQ77307

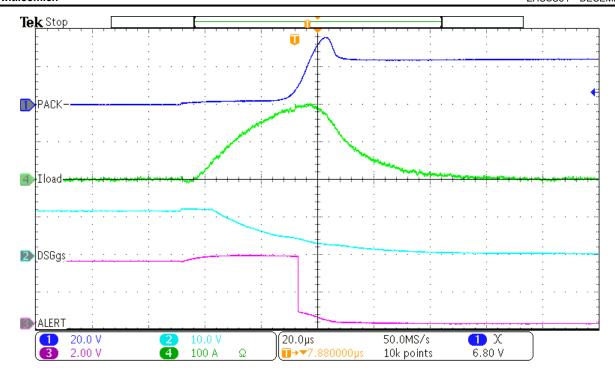


图 8-4. SCD 事件和保护的示波器图

8.2.4 随机电芯连接支持

BQ77307 器件支持在电池包制造期间按照随机顺序将电芯连接到该器件。例如,7 节电池组中的电芯 6 可以首先连接到引脚 VC6 和 VC5 的输入端子,然后电芯 2 可以连接到引脚 VC2 和 VC1 的输入端子,依此类推。无需先在 VC0 处连接电芯 1 的负极端子。再举一个例子,假设一个电池组已经组装好,并且电芯已经互相连接,然后该电池组通过一个连接器连接到 PCB,而该连接器可以插入或焊接到 PCB 上。在这种情况下,与 PCB 的连接顺序在时间上可能是随机的,无需按特定的顺序进行控制。

制造期间对电芯的连接方式存在一些限制:

- 为了避免误解,请注意电池组中的电芯不能随机连接到器件上的任何 VC 引脚,例如最下面的电芯(电芯 1)连接到 VC7,而顶部电芯(电芯 7)连接到 VC2 等等。重要的是,电池组中的电芯按引脚升序连接,最下面的电芯(电芯 1)连接在 VC1 和 VC0 之间,下一个更高电压的电芯(电芯 2)连接在 VC2 和 VC1 之间等等。
- 由于引脚 VC1-VC7 上的高电压容差,因此可以支持随机电芯连接。

备注

VC0 具有较低的电压容差。这是因为在任何电芯连接到 PCB 之前,VC0 应通过串联电池输入电阻器连接到 PCB 上的 VSS 引脚。因此,在电芯连接期间,VC0 引脚电压预计将保持接近 VSS 引脚电压。如果 VC0 没有通过串联电阻器连接到 PCB 上的 VSS,则电芯无法以随机顺序连接。

VC1-VC7 引脚各自都在该引脚和相邻的下个电芯输入引脚之间(即 VC7 和 VC6 之间、VC6 和 VC5 之间等)包含一个二极管,该二极管会在正常运行时反向偏置。这意味着,不应将上方电芯输入引脚驱动为低电压,而将下方电芯输入引脚驱动为高电压,因为这会使这些二极管正向偏置。在电芯连接期间,电芯输入端子通常在连接到适当的电芯之前处于悬空状态。连接每个电芯后,预计瞬态电流会短暂流动,但电芯电压会快速稳定到没有直流电流流经这些二极管的状态。但是,如果在电芯输入引脚和另一个端子(例如 VSS 或另一个电芯输入引脚)之间包含大电容,瞬态电流可能会过大并导致器件发热。因此,建议将施加在每个电芯输入引脚上的电容限制为规格中建议的值。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

8.2.5 启动时序

BQ77307 器件从 SHUTDOWN 状态初始上电时,该器件执行一系列事件,然后再进入 NORMAL 模式运行。下面 作为两个示例配置介绍了这些事件,并展示了近似时序。

表 8-2. 启动序列和时序

STEP	备注	近似时序(相对于唤醒事件)
唤醒事件	TS 引脚或 VC0 引脚被上拉,触发器件退出 SHUTDOWN 模式。	0
REGOUT 上电	通过 OTP 编程为自主给 REGOUT LDO 供电的情况下测量时序。	2.6ms
FET 启用(7 节串联)	通过 OTP 编程为自主启用 FET 的情况下测量时序。	9.4ms
FET 启用(5 节串联)	通过 OTP 编程为自主启用 FET 的情况下测量时序。	8.6ms

8.2.6 FET 驱动器关断

当低侧 CHG 和 DSG FET 驱动器被触发而关闭其各自的 FET 时,它们的工作方式有所不同。DSG 驱动器包含一 个内部开关,当驱动器被禁用时,该开关会将 DSG 引脚驱动至 VSS 引脚电平。该驱动器指定为在具有 20nF 容 性负载且 DSG 引脚和 DSG 栅极之间具有 100Ω 串联电阻时下降时间最大。如果将驱动器与较大的容性负载一起 使用,下降时间通常会增加。系统设计人员可以根据使用的电路板组件和 DSG FET 来优化串联电阻值。

DSG 引脚和 DSG FET 栅极之间的外部串联栅极电阻用于调整关断瞬态的速度。低电阻(如 100Ω)可在短路事 件期间提供快速关断,但这可能会在 FET 禁用时导致电池组顶部的电感尖峰过大。较大的电阻值(例如 1kΩ 或 4.7kΩ)会降低此速度和相应的电感尖峰水平。

CHG FET 驱动器会将 CHG 引脚放电至 VSS 引脚电平,但它包括一个额外的串联 PFET 以支持低于 VSS 的电 压。当电池包深度放电时,通常需要这样做,例如,如果 7 节串联电池包中每节电芯的电压为 2.5V,则相对于器 件 VSS,PACK+ = 17.5V。然后,如果在 CHG FET 被禁用时连接了充电器,并相对于 PACK- 在 PACK+ 上施加 完全充电电压,例如每节电池 4.3V 或 7 节电池包 30.1V,这会导致 PACK– 相对于 VSS 降至大约 –12.6V。要使 CHG FET 保持禁用状态,其栅极电压必须降至接近此 -12V 电平。

为了支持这种情况,BQ77307 中的 CHG FET 驱动器设计为通过在该引脚上包含一个串联 PFET 且其栅极连接到 VSS,能够承受相对于 VSS 引脚电压低至 –25V(推荐)的电压。当 CHG 驱动器被禁用时,该驱动器会将引脚 电压拉低。当引脚电压接近 VSS 时,PFET 被禁用,从而使该引脚变为高阻抗。此时,CHG FET 上的外部栅源 电阻器会将引脚电压拉低至 PACK- 电平,使 CHG FET 保持禁用状态。

下面展示了 DSG 驱动器关断情况下示波器捕获的波形,其中 DSG 引脚驱动 CSD18532Q5B NFET 栅极,其典 型 Ciss 为 3900pF。图 8-5 展示了在 DSG 引脚和 FET 栅极之间使用 1.35kΩ 串联栅极电阻器以及在 PACK+ 和 PACK- 之间连接 2A 负载时的信号。

提交文档反馈

32

Copyright © 2024 Texas Instruments Incorporated



图 8-5. 中速 DSG FET 关断,使用一个 1.35kΩ 串联栅极电阻,并且 PACK+ 和 PACK- 之间具有 2A 负载。

图 8-6 展示了一个较慢的关断情况,其中使用一个 $4.7k\Omega k\Omega$ 串联栅极电阻器且 PACK+ 和 PACK- 之间具有 2A 负载。

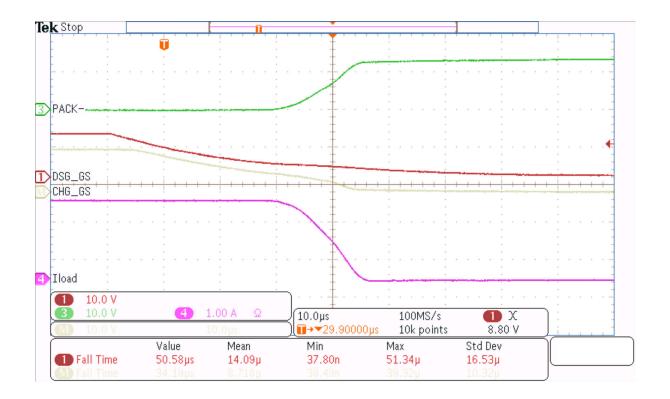


图 8-6. 使用 4.5kΩ 串联栅极电阻器时的较慢关断情况

图 8-7 展示了快速关断情况,其中在 DSG 引脚和 FET 栅极之间使用了一个 100Ω 串联栅极电阻器。

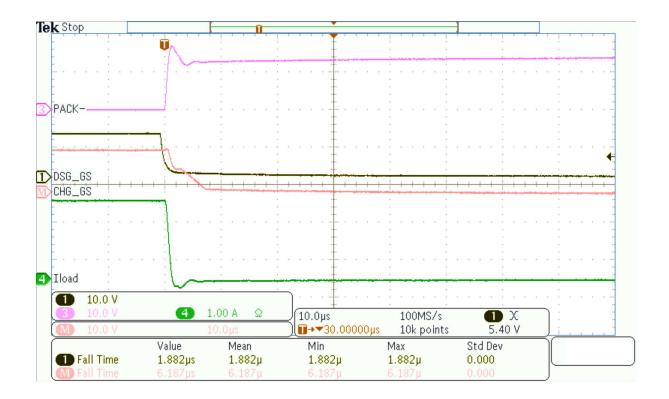


图 8-7. 使用 100Ω 串联栅极电阻时的快速关断情况

8.2.7 未使用引脚的使用

特定应用中可能不需要某些器件引脚。端接未使用的引脚 显示了这种情况下每个引脚的端接方式。

表 8-3. 端接未使用的引脚

引脚	名称	建议
1-5、18– 20	VC0-VC7	电芯输入 1 和 7 必须始终连接到实际电芯,其中电芯连接在 VC1 和 VC0 之间以及 VC7 和 VC6 之间。VC0 必须通过 PCB 上的电阻器和电容器连接到引脚 11 (VSS)。与未使用电芯相关的引脚(可以是电芯 2 至电芯 6,引脚1 - 3、20)必须直接短接到相邻的 VC 引脚。所有 VC 引脚都必须连接到相邻的 VC 引脚或实际电芯(通过 R 和 C)。
6、7	SRP, SRN	如果未使用这些引脚,则将其连接到引脚 11 (VSS)。
8	TS	如果未使用该引脚,则将其连接到引脚 11 (VSS)。
9、10	DSG、CHG	如果未使用这些引脚,则将其保持悬空。
12、13	SCL , SDA	如果未使用这些引脚,则将其连接到引脚 11 (VSS)。
14、15	ALERT、 REGOUT	如果未使用这些引脚,则将其保持悬空。
16	REGSRC	如果 REGOUT 稳压器以及 CHG 和 DSG 驱动器均未使用,则将此引脚连接到引脚 17 (BAT)。

Product Folder Links: BQ77307

9 电源建议

BQ77307 器件从 BAT 引脚获取其电源电流,该引脚通常通过串联二极管连接到电池组顶部,以防止器件内发生任何故障,从而导致大电池组意外充电。该器件包含一个串联电阻器和电容器,以对电阻组电压的快速变化进行低通滤波。在发生短路事件期间,在禁用保护 FET 之前,电池组电压可能会暂时拉至极低的电压。在这种情况下,BAT 引脚电容器上的电荷将暂时支持 BQ77307 器件的电源电流,以避免器件断电。

REGSRC 引脚用作集成 REGOUT 客户稳压器以及 CHG 和 DSG FET 驱动器的电源电压。此引脚还可以通过二极管连接到电池组顶部,以类似地允许电压在短路事件期间保持更长时间。如果电池组顶部和 REGSRC 引脚之间包含一个二极管或任何串联电阻 (> 1Ω),则建议在 VSS 至 REGSRC 引脚之间包含一个最小 1μ F 的电容器。也可以将 REGSRC 引脚短接至 BAT 引脚,以便同一二极管和滤波器电路可以同时支持这两个引脚。不过,在这种情况下,REGOUT 引脚上的负载会更快地对 BAT 电容器放电,系统设计人员应考虑这一点。

10 布局

10.1 布局指南

- 检测电阻上的开尔文连接质量至关重要。检测电阻的温度系数应不大于 50ppm,以更大程度地减小电流检测随温度的漂移。选择检测电阻的值,使其与 BQ77307 器件可用的过流和短路范围相对应。只要确保良好的开尔文检测,就可以使用并联电阻。
- 对于系统电路,需要注意元件放置和布局的以下特性:差分低通滤波器和 I²C 通信。
- 为了获得理想性能,从检测电阻端子到器件的 SRP 和 SRN 输入之间应包含 100Ω 电阻,并在 SRP 和 SRN 引脚之间放置一个 0.1μF 滤波电容器。可以添加可选的 0.1μF 滤波电容器,为每个接地检测输入引脚进行额外的噪声滤波。所有滤波器元件应放置在尽可能靠近器件的位置,而不是靠近检测电阻以及与滤波器电路并联的检测电路布线。滤波器网络周围还可以包含接地平面,以增加额外的抗噪能力。
- 检测电阻与 SRP 和 SRN 端子之间的这些滤波器元件可以滤除噪声分量,但它们也会引入 RC 时间常数延迟,使用两个 100kΩ 和一个差分 0.1μF 元件时标称值为 20μs。如果此延迟导致器件对短路事件的响应中额外增加了太多时间,则可以减小滤波器时间常数,但代价是会减少滤波。
- I²C 时钟和数据引脚具有集成式 ESD 保护电路;但是,在每个引脚上添加齐纳二极管和串联电阻器可提供更强大的 ESD 性能。

10.2 布局示例

下面介绍了在 7 节串联电芯设计中使用 BQ77307 器件的电路布局示例。该设计实现了 BQ77307 7 节串联电芯原理图 - 监测器和 BQ77307 7 节串联电芯原理图 - 附加电路,并使用 2.175 英寸 × 1.400 英寸 2 层电路卡组件,其中电芯连接在左侧边缘,而电池包连接在电路板的底部边缘。这里使用了宽布线区域,从而降低高电流路径的电压降。

如 BQ77307 两层电路板布局布线 - 顶层和 BQ77307 两层电路板布局布线 - 底层所示,电路板布局布线包括电火,参考符号前缀 E。这些火花隙与电路板装配在一起,无需安装元件。

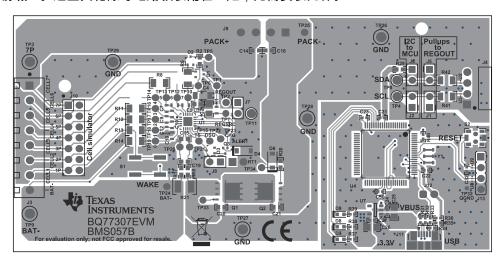


图 10-1, BQ77307 两层电路板布局布线 - 顶层

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

37

Product Folder Links: BQ77307

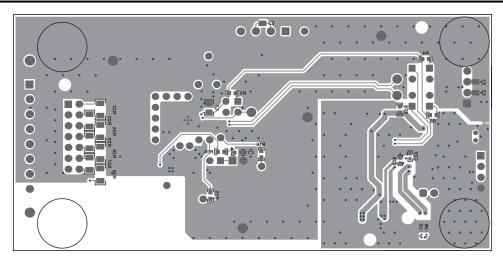


图 10-2. BQ77307 两层电路板布局布线 - 底层

11 器件和文档支持

TI 提供大量的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。

11.1 文档支持

11.1.1 相关文档

如需更多信息,请参阅以下相关文档:

- BQ77307 技术参考手册
- Battery Management Studio (bqStudio) 软件

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

11.4 商标

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

11.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.6 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

12 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Copyright © 2024 Texas Instruments Incorporated

日期	修订版本	说明				
December 2023	*	初始发行版				

Product Folder Links: BQ77307

English Data Sheet: SLUSF60

13 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

English Data Sheet: SLUSF60

40

Product Folder Links: BQ77307

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
BQ77307RGRR	Active	Production	VQFN (RGR) 20	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 110	77307
BQ77307RGRR.A	Active	Production	VQFN (RGR) 20	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 110	77307

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

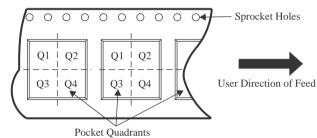
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

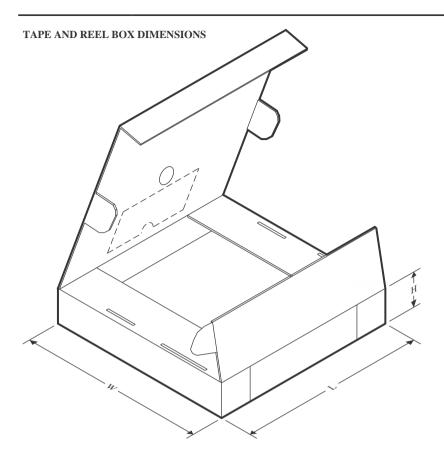
www.ti.com 16-Dec-2023


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

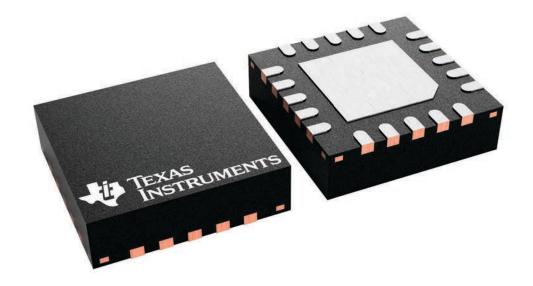


*All dimensions are nominal

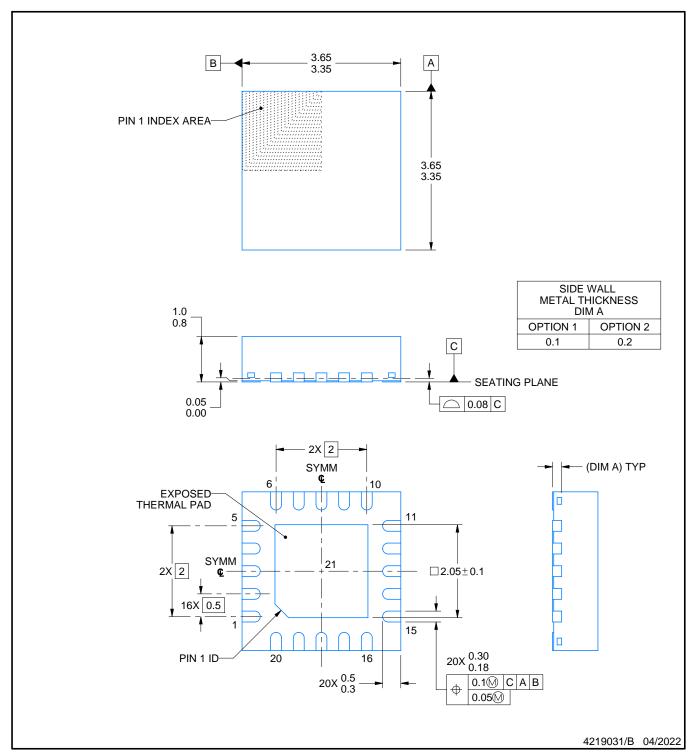
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ77307RGRR	VQFN	RGR	20	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Dec-2023


*All dimensions are nominal

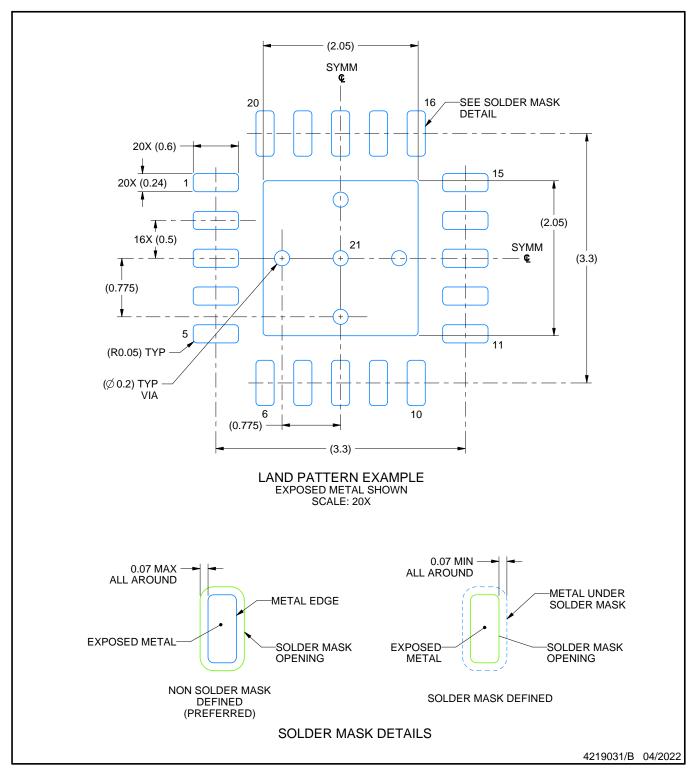
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	BQ77307RGRR	VQFN	RGR	20	3000	367.0	367.0	35.0	


3.5 x 3.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

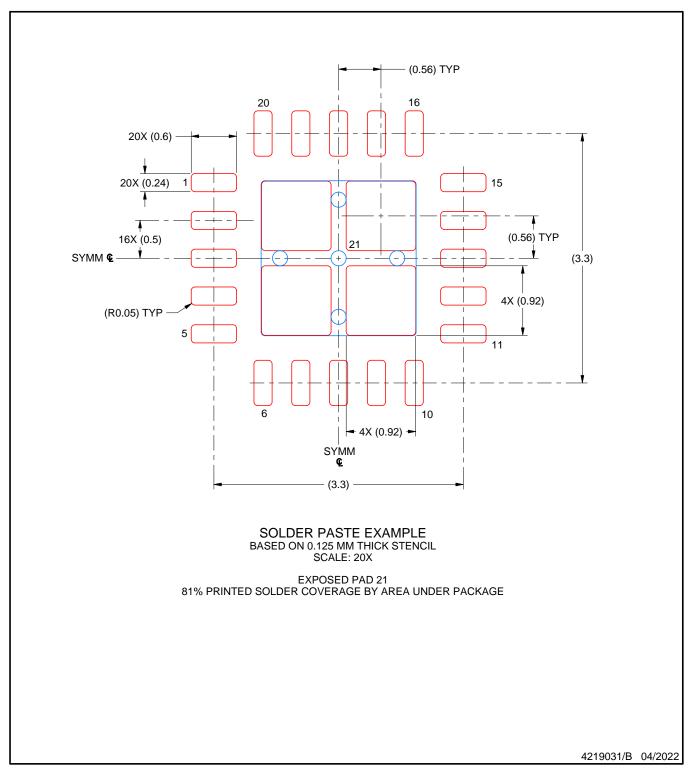
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月