

AMC0x11D-Q1 具有固定增益和差分输出的汽车级 2V 输入、 基础型隔离和增强型隔离精密放大器

1 特性

- 符合面向汽车应用的 AEC-Q100 标准:
 温度等级 1:-40℃ 至+125℃, T_Δ
- 线性输入电压范围:-0.1V 至 2V
- 高输入阻抗: 2.4GΩ (典型值)
- 电源电压范围:
 - 高侧 (VDD1): 3.0V 至 5.5V
 - 低侧 (VDD2): 3.0V 至 5.5V
- 固定增益:1V/V
- 差分输出
- 低直流误差:
 - 失调电压误差:±0.8mV(最大值)
 - 温漂:±10µV/°C(最大值)
 - 增益误差:±0.25%(最大值)
 - 增益漂移: ±50ppm/°C(最大值)
 - 非线性度:±0.035%(最大值)
- 高 CMTI: 150V/ns (最小值)
- 低 EMI:符合 CISPR-11 和 CISPR-25 标准
- 隔离等级:
 - AMC0211D-Q1: 基础型隔离
 - AMC0311D-Q1: 增强型隔离
- 安全相关认证:
 - DIN EN IEC 60747-17 (VDE 0884-17)
 - UL1577

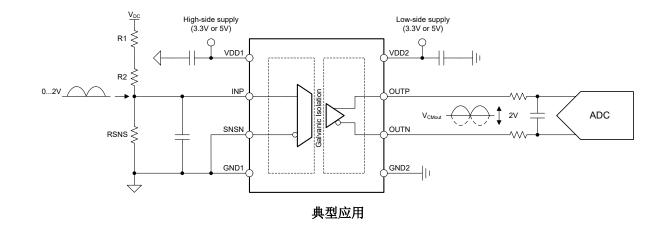
2 应用

- 牵引逆变器
- 车载充电器
- 直流/直流转换器

3 说明

AMC0x11D-Q1 是一款精密的电隔离放大器,具有 2V 高阻抗输入、固定增益和差分输出。高阻抗输入针对与高阻抗电阻分压器或具有高输出电阻的其他电压信号源的连接进行了优化。

隔离栅将在不同共模电压电平下运行的系统器件隔开。 该隔离栅抗电磁干扰性能极强。该隔离栅经过认证,可 提供高达 5kV_{RMS} 的增强型隔离(DWV 封装)和高达 3kV_{RMS} 的基础型隔离(D 封装)(60s)。


AMC0x11D-Q1 输出与输入电压成正比的差分信号。差分输出对接地漂移不敏感,这使得可以将输出信号进行远距离传输。

AMC0x11D-Q1 器件采用 8 引脚、宽体和窄体 SOIC 封装,额定温度范围为 - 40℃ 至 +125℃。

	封装信息	
器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
AMC0211D-Q1 (3)	D (SOIC 8)	4.9mm × 6.0mm
AMC0311D-Q1	DWV (SOIC 8)	5.85mm × 11.5mm

(1) 如需更多信息,请参阅*机械、封装和可订购信息* 附录。

- (2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。
- (3) 产品预发布

内容

3 说明	1 特性1	6.17 典型特性	15
4 器件比较表 2 7.2 功能方框图 17 5 引脚配置和功能 3 7.3 特性说明 18 6 规格 4 7.4 器件功能模式 20 6.1 绝对最大额定值 4 8应用和实施 21 6.2 ESD 等级 4 8.1 应用信息 21 6.3 建议运行条件 4 8.2 典型应用 21 6.4 热性能信息(D封装) 5 8.3 最佳设计实践 24 6.5 热性能信息(DVV 封装) 5 8.4 电源相关建议 25 6.6 额定功率 5 8.5 布局 25 6.7 绝缘规格(基本隔离) 6 9 8件和文档支持 26 6.8 绝缘规格(增强型隔离) 7 9.1 文档支持 26 6.10 安全相关认证(增强型隔离) 7 9.3 支持资源 26 6.11 安全限值(D封装) 10 9.4 商标 26 6.12 安全限值(DVV 封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 11 机械、封装和可订购信息 26	2 应用1	7 详细说明	17
5 引脚配置和功能 3 7.3 特性说明 18 6 规格 4 7.4 器件功能模式 20 6.1 绝对最大额定值 4 8 应用和实施 21 6.2 ESD 等级 4 8.1 应用信息 21 6.3 建议运行条件 4 8.2 典型应用 21 6.4 热性能信息(D封装) 5 8.3 最佳设计实践 24 6.5 热性能信息(DWV封装) 5 8.4 电源相关建议 25 6.6 额定功率 5 8.5 布局 25 6.7 绝缘规格(基本隔离) 6 9 器件和文档支持 26 6.8 绝缘规格(增强型隔离) 7 9.1 文档支持 26 6.10 安全相关认证(增强型隔离) 9 9.3 支持资源 26 6.11 安全限值(D封装) 10 9.4 商标 26 6.12 安全限值(DWV 封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 11 机械、封装和可订购信息 26	3 说明1	7.1 概述	17
6 规格 4 7.4 器件功能模式 20 6.1 绝对最大额定值 4 8 应用和实施 21 6.2 ESD 等级 4 8.1 应用信息 21 6.3 建议运行条件 4 8.2 典型应用 21 6.4 热性能信息(D 封装) 5 8.3 最佳设计实践 24 6.5 热性能信息(DWV 封装) 5 8.4 电源相关建议 25 6.6 额定功率 5 8.5 布局 25 6.7 绝缘规格(基本隔离) 6 9 器件和文档支持 26 6.8 绝缘规格(增强型隔离) 7 9.1 文档支持 26 6.9 安全相关认证(基本隔离) 8 9.2 接收文档更新通知 26 6.10 安全相关认证(增强型隔离) 9 9.3 支持资源 26 6.11 安全限值(D 封装) 10 9.4 商标 26 6.12 安全限值(DWV 封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 11 机械、封装和可订购信息 26	4 器件比较表2	7.2 功能方框图	17
6.1 绝对最大额定值	5 引脚配置和功能	7.3 特性说明	18
6.2 ESD 等级. 4 8.1 应用信息. 21 6.3 建议运行条件. 4 8.1 应用信息. 21 6.4 热性能信息 (D 封装). 5 8.3 最佳设计实践. 24 6.5 热性能信息 (DWV 封装). 5 8.4 电源相关建议. 25 6.6 额定功率. 5 8.5 布局. 25 6.7 绝缘规格 (基本隔离). 6 9 器件和文档支持. 26 6.8 绝缘规格 (增强型隔离). 7 9.1 文档支持. 26 6.10 安全相关认证 (基本隔离). 8 9.2 接收文档更新通知. 26 6.10 安全相关认证 (增强型隔离). 9 9.3 支持资源. 26 6.11 安全限值 (D 封装). 10 9.4 商标. 26 6.12 安全限值 (DWV 封装). 11 9.5 静电放电警告. 26 6.13 电气特性. 12 9.6 术语表. 26 6.14 开关特性. 13 10 修订历史记录. 26 6.15 时序图. 13 11 14、封装和可订购信息. 26	6 规格	7.4 器件功能模式	20
6.3 建议运行条件	6.1 绝对最大额定值4	8 应用和实施	<mark>21</mark>
6.4 热性能信息(D封装)56.5 热性能信息(DWV 封装)56.6 额定功率56.6 额定功率56.7 绝缘规格(基本隔离)66.8 绝缘规格(增强型隔离)76.9 安全相关认证(基本隔离)76.10 安全相关认证(增强型隔离)76.11 安全限值(D封装)106.12 安全限值(DWV 封装)116.13 电气特性126.14 开关特性136.15 时序图13	6.2 ESD 等级	8.1 应用信息	<mark>21</mark>
6.5 热性能信息(DWV 封装)56.6 额定功率56.6 额定功率56.7 绝缘规格(基本隔离)66.8 绝缘规格(增强型隔离)76.9 安全相关认证(基本隔离)76.9 安全相关认证(基本隔离)86.10 安全相关认证(增强型隔离)98.1 电气特性106.12 安全限值(DWV 封装)116.13 电气特性126.14 开关特性136.15 时序图13	6.3 建议运行条件4	8.2 典型应用	21
6.6 额定功率	6.4 热性能信息(D 封装)5	8.3 最佳设计实践	24
6.7 绝缘规格(基本隔离) 6 9 器件和文档支持 26 6.8 绝缘规格(增强型隔离) 7 9.1 文档支持 26 6.9 安全相关认证(基本隔离) 8 9.2 接收文档更新通知 26 6.10 安全相关认证(增强型隔离) 9 9.3 支持资源 26 6.11 安全限值(D封装) 10 9.3 支持资源 26 6.12 安全限值(DWV 封装) 10 9.4 商标 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 13 11 机械、封装和可订购信息 26	6.5 热性能信息(DWV 封装)5	8.4 电源相关建议	25
6.8 绝缘规格(增强型隔离)	6.6 额定功率5	8.5 布局	25
6.9 安全相关认证(基本隔离)	6.7 绝缘规格(基本隔离)6	9 器件和文档支持	26
6.10 安全相关认证(增强型隔离) 9 9.3 支持资源 26 6.11 安全限值(D封装) 10 9.4 商标 26 6.12 安全限值(DWV封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 15 时序图 13 13 11 11	6.8 绝缘规格(增强型隔离)7	9.1 文档支持	<mark>26</mark>
6.11 安全限值(D封装) 10 9.4 商标 26 6.12 安全限值(DWV封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 11 机械、封装和可订购信息 26	6.9 安全相关认证 (基本隔离)8	9.2 接收文档更新通知	<mark>26</mark>
6.12 安全限值(DWV 封装) 11 9.5 静电放电警告 26 6.13 电气特性 12 9.6 术语表 26 6.14 开关特性 13 10 修订历史记录 26 6.15 时序图 13 11 机械、封装和可订购信息 26	6.10 安全相关认证(增强型隔离)9	9.3 支持资源	<mark>26</mark>
6.13 电气特性			
6.14 开关特性	6.12 安全限值(DWV 封装)11	9.5 静电放电警告	26
6.15 时序图	6.13 电气特性12	9.6 术语表	<mark>26</mark>
	6.14 开关特性13		
6.16 绝缘特性曲线 14 11.1 机械数据	6.15 时序图13	11 机械、封装和可订购信息	<mark>26</mark>
	6.16 绝缘特性曲线14	11.1 机械数据	27

4 器件比较表

参数	AMC0211D-Q1 ⁽¹⁾	AMC0311D-Q1
符合 VDE 0884-17 的隔离等级	基础型	增强型
封装	窄体 SOIC (D)	宽体 SOIC (DWV)

(1) 产品预发布

5 引脚配置和功能

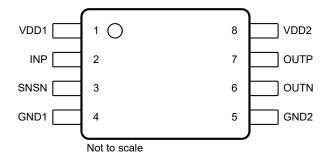


图 5-1. DWV 和 D 封装, 8 引脚 SOIC (顶视图)

表 5-1. 引脚功能

引脚		类型	说明	
编号	名称	·	07.93	
1	VDD1	高侧电源	高侧电源 ⁽¹⁾	
2	INP	模拟输入	模拟输入	
3	SNSN	模拟输入	调制器的 GND1 检测引脚和反相模拟输入。连接至 GND1。	
4	GND1	高侧接地端	高侧模拟地	
5	GND2	低侧接地端	低侧模拟地	
6	OUTN	模拟输出	反相模拟输出	
7	OUTP	模拟输出	同相模拟输出	
8	VDD2	低侧电源	低侧电源(1)	

(1) 有关电源去耦方面的建议,请参阅 电源相关建议部分。

6 规格

6.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
中派中正	高侧 VDD1 至 GND1	-0.3	6.5	V
电源电压	低侧 VDD2 至 GND2	-0.3	6.5	v
模拟输入电压	INP、SNSN 至 GND1	GND1 - 3	VDD1 + 0.5	V
模拟输出电压	OUTP、OUTN 至 GND2	GND2 - 0.5	VDD2 + 0.5	V
输入电流	连续,除电源引脚外的任何引脚	-10	10	mA
泪卉	结温,TJ		150	°C
温度	贮存温度,T _{stg}	-65	150	C

(1) 在绝对最大额定值范围外运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议的工作条件以外的任何其他条件下能够正常运行。如果超出建议运行条件但在绝对最大额定值范围内使用,器件可能不会完全正常运行,这可能影响器件的可靠性、功能和性能并缩短器件寿命。

6.2 ESD 等级

			值	单位	
V _(ESD)	静电放电	人体放电模型 (HBM),符合 AEC Q100-002 ⁽¹⁾ HBM ESD 分类等级 2	±2000	V	
V(ESD)		充电器件模型 (CDM),符合 AEC Q100-011 CDM ESD 分类等级 C6	±1000	v	

(1) AEC Q100-002 指示应当按照 ANSI/ESDA/JEDEC JS-001 规范执行 HBM 应力测试。

6.3 建议运行条件

在工作环境温度范围内测得(除非另有说明)

			最小值	标称值	最大值	单位
电源						
VDD1	高侧电源	VDD1 至 GND1	3	5.0	5.5	V
VDD2	低侧电源	VDD2 至 GND2	3	3.3	5.5	V
模拟输入						
V _{Clipping}	削波输出前的标称输入电压	V _{IN} = V _{INP} - V _{SNSN}	-0.2		2.56	V
V _{FSR}	额定线性输入电压	V _{IN} = V _{INP} - V _{SNSN}	-0.1		2	V
模拟输出					i	
<u> </u>	家耕在书	OUTP 或 OUTN 至 GND2			500	~ F
C _{LOAD}	容性负载	OUTP 至 OUTN			250	pF
R _{LOAD}	电阻负载	OUTP 或 OUTN 至 GND2		10	1	kΩ
数字 I/O						
温度范围						
T _A	额定环境温度		-40		125	°C

6.4 热性能信息(D封装)

	热指标 ⁽¹⁾	D (SOIC)	**
	7代1月121、1	8 引脚	单位
R _{0 JA}	结至环境热阻	116.5	°C/W
R ₀ JC(top)	结至外壳(顶部)热阻	52.8	°C/W
R _{0 JB}	结至电路板热阻	58.9	°C/W
Ψ_{JT}	结至项部特征参数	19.4	°C/W
Ψ _{JB}	结至电路板特征参数	58.0	°C/W
R _{0 JC(bot)}	结至外壳(底部)热阻	不适用	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用手册。

6.5 热性能信息(DWV 封装)

	热指标 ⁽¹⁾	DWV (SOIC)	单位
	7311170	8 引脚	甲位
R _{0JA}	结至环境热阻	102.8	°C/W
R ₀ JC(top)	结至外壳(顶部)热阻	45.1	°C/W
R _{0 JB}	结至电路板热阻	63.0	°C/W
Ψ_{JT}	结至顶部特征参数	14.3	°C/W
Ψ _{JB}	结至电路板特征参数	61.1	°C/W
R ₀ JC(bot)	结至外壳(底部)热阻	不适用	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用手册。

6.6 额定功率

	参数	测试条件	值	单位
P _D	最大功耗(两侧)	VDD1 = VDD2 = 5.5V	83	mW
P _{D1}	最大功耗(高侧)	VDD1 = 5.5V	33	mW
P _{D2}	最大功耗(低侧)	VDD2 = 5.5V	50	mW

6.7 绝缘规格(基本隔离)

在工作环境温度范围内测得(除非另有说明)

	参数	测试条件	值	単位
通用		· · · · · · · · · · · · · · · · · · ·		
CLR	外部间隙(1)	引脚间的最短空间距离	≥ 4	mm
CPG	外部爬电距离(1)	引脚间的最短封装表面距离	≥ 4	mm
DTI	绝缘穿透距离	绝缘层的最小内部缝隙(内部间隙)	≥ 15.4	μm
СТІ	相对漏电起痕指数	DIN EN 60112 (VDE 0303-11) ; IEC 60112	≥ 600	V
	材料组	符合 IEC 60664-1	I	
	过压类别	额定市电电压 ≤ 300V _{RMS}	I-IV	
	(符合 IEC 60664-1)	额定市电电压 ≤ 600V _{RMS}	1-111	
DIN EN	IEC 60747-17 (VDE 0884-17)	(2)		
VIORM	最大重复峰值隔离电压	在交流电压下	1130	V _{PK}
V	最大额定隔离	在交流电压下(正弦波)	800	V _{RMS}
V _{IOWM}	工作电压	在直流电压下	1130	V _{DC}
V _{IOTM}	最大瞬态 隔离电压	V _{TEST} = V _{IOTM} ,t = 60s(鉴定测试), V _{TEST} = 1.2 × V _{IOTM} ,t = 1s(100% 生产测试)	4250	V _{PK}
V _{IMP}	最大脉冲电压(3)	在空气中测试,符合 IEC 62368-1 标准的 1.2/50µs 波形	5000	V _{PK}
V _{IOSM}	最大浪涌 隔离电压 ⁽⁴⁾	在油中进行测试(鉴定测试), 符合 IEC 62368-1 的 1.2/50μs 波形	10000	V _{PK}
	视在电荷 ⁽⁵⁾	方法 a,输入/输出安全测试子组 2 和 3 后, V _{pd(ini)} = V _{IOTM} ,t _{ini} = 60s,V _{pd(m)} = 1.2 × V _{IORM} ,t _m = 10s	≤ 5	
a		方法 a,环境测试子组 1 后, V _{pd(ini)} = V _{IOTM} ,t _{ini} = 60s,V _{pd(m)} = 1.3 × V _{IORM} ,t _m = 10s	≤ 5	- Da
q _{pd}		方法 b1,预处理(类型测试)和常规测试, V _{pd(ini}) = V _{IOTM} ,t _{ini} = 1s,V _{pd(m}) = 1.5 × V _{IORM} ,t _m = 1s	≤ 5	_ ρυ
		方法 b2,常规测试(100% 生产) ⁽⁷⁾ , V _{pd(ini)} = V _{IOTM} = V _{pd(m)} ,t _{ini} = t _m = 1s	≤ 5	
C _{IO}	势垒电容, 输入至输出 ⁽⁶⁾	V _{IO} = 0.5V _{PP} (1MHz)	≅1.5	pF
		V _{IO} = 500V (T _A = 25°C)	> 10 ¹²	
R _{IO}	绝缘电阻, 输入至输出 ⁽⁶⁾	V_{IO} = 500V (100°C \leqslant T _A \leqslant 125°C)	> 10 ¹¹	Ω
		V _{IO} = 500V , T _S = 150°C	> 10 ⁹	
	污染等级		2	
	气候类别		55/125/21	
UL1577				
V _{ISO}	可承受的隔离电压	V _{TEST} = V _{ISO} ,t = 60s(鉴定测试); V _{TEST} = 1.2 × V _{ISO} ,t = 1s(100% 生产测试)	3000	V _{RMS}
		1	1	

(1) 根据应用特定的设备隔离标准应用爬电距离和电气间隙要求。保持电路板设计的爬电距离和间隙,从而确保印刷电路板 (PCB)上隔离器的安装焊盘不会导致此距离缩短。在某些情况下,PCB上的爬电距离和电气间隙相等。在 PCB 上插入坡口、肋或两者等技术可帮助提高这些规格。

(2) 此耦合器仅适用于安全额定值范围内的安全电气绝缘。应借助合适的保护电路来确保符合安全等级。

(3) 在空气中进行测试,以确定封装的浪涌抗扰度。

(4) 在油中进行测试,以确定隔离栅的固有浪涌抗扰度。

(5) 视在电荷是局部放电 (pd) 引起的电气放电。

(6) 将隔离栅每一侧的所有引脚都连在一起,构成一个双引脚器件。

(7) 生产中使用方法 b1 或 b2。

6.8 绝缘规格(增强型隔离)

在工作环境温度范围内测得(除非另有说明)

	参数	测试条件	值	单位
通用				
CLR	外部间隙 ⁽¹⁾	引脚间的最短空间距离	≥ 8.5	mm
CPG	外部爬电距离 ⁽¹⁾	引脚间的最短封装表面距离	≥ 8.5	mm
DTI	绝缘穿透距离	双重绝缘层的最小内部缝隙(内部间隙)	≥ 15.4	μm
СТІ	相对漏电起痕指数	DIN EN 60112 (VDE 0303-11) ; IEC 60112	≥ 600	V
	材料组	符合 IEC 60664-1	I	
	过压类别	额定市电电压 ≤ 300V_{RMS}	I-IV	
	(符合 IEC 60664-1)	额定市电电压 ≤ 6000V _{RMS}	1-111	_
DIN EN	IEC 60747-17 (VDE 0884-17)	(2)		
VIORM	最大重复峰值隔离电压	在交流电压下	2120	V _{PK}
	最大额定隔离	在交流电压下(正弦波)	1500	V _{RMS}
V _{IOWM}	工作电压	在直流电压下	2120	V _{DC}
V _{IOTM}	最大瞬态 隔离电压	V _{TEST} = V _{IOTM} ,t = 60s(鉴定测试), V _{TEST} = 1.2 × V _{IOTM} ,t = 1s(100% 生产测试)	7000	V _{PK}
VIMP	最大脉冲电压 ⁽³⁾	在空气中测试,符合 IEC 62368-1 标准的 1.2/50µs 波形	7700	V _{PK}
V _{IOSM}	最大浪涌 隔离电压 ⁽⁴⁾	在油中进行测试(鉴定测试), 符合 IEC 62368-1 的 1.2/50μs 波形	10000	V _{PK}
	视在电荷 ⁽⁵⁾	方法 a,输入/输出安全测试子组 2 和 3 后, V _{pd(ini)} = V _{IOTM} ,t _{ini} = 60s,V _{pd(m)} = 1.2 × V _{IORM} ,t _m = 10s	≤ 5	
		方法 a,环境测试子组 1 后, V _{pd(ini)} = V _{IOTM} ,t _{ini} = 60s,V _{pd(m)} = 1.6 × V _{IORM} ,t _m = 10s	≤ 5	
q _{pd}		方法 b1,预处理(类型测试)和常规测试, V _{pd(ini)} = 1.2 x V _{IOTM} ,t _{ini} = 1s,V _{pd(m)} = 1.875 × V _{IORM} ,t _m = 1s	≤ 5	pC
		方法 b2,常规测试(100% 生产) ⁽⁷⁾ V _{pd(ini)} = V _{pd(m)} = 1.2 × V _{IOTM} ,t _{ini} = t _m = 1s	≤ 5	
C _{IO}	势垒电容, 输入至输出 ⁽⁶⁾	V _{IO} = 0.5V _{PP} (1MHz)	≅1.5	pF
		V _{IO} = 500V (T _A = 25°C)	> 10 ¹²	
R _{IO}	绝缘电阻, 输入至输出 ⁽⁶⁾	$V_{\text{IO}} = 500 \text{V} \ (100^{\circ}\text{C} \leqslant \text{T}_{\text{A}} \leqslant 125^{\circ}\text{C})$	> 10 ¹¹	Ω
		V _{IO} = 500V , T _S = 150°C	> 10 ⁹	1
	污染等级		2	
	气候类别		55/125/21	
UL1577	,			
V _{ISO}	可承受的隔离电压	V _{TEST} = V _{ISO} ,t = 60s(鉴定测试), V _{TEST} = 1.2 × V _{ISO} ,t = 1s(100% 生产测试)	5000	V _{RM}

(1) 根据应用特定的设备隔离标准应用爬电距离和电气间隙要求。保持电路板设计的爬电距离和间隙,从而确保印刷电路板 (PCB) 上隔离器的安装焊盘不会导致此距离缩短。在某些情况下,PCB 上的爬电距离和电气间隙相等。在 PCB 上插入坡口、肋或两者等技术可帮助提高这些规格。

(2) 此耦合器仅适用于安全额定值范围内的安全电气绝缘。应借助合适的保护电路来确保符合安全等级。

(3) 在空气中进行测试,以确定封装的浪涌抗扰度。

(4) 在油中进行测试,以确定隔离栅的固有浪涌抗扰度。

(5) 视在电荷是局部放电 (pd) 引起的电气放电。

(6) 将隔离栅每一侧的所有引脚都连在一起,构成一个双引脚器件。

(7) 生产中使用方法 b1 或 b2。

6.9 安全相关认证(基本隔离)

VDE	UL
DIN EN IEC 60747-17 (VDE 0884-17)、 EN IEC 60747-17、 DIN EN 61010-1 (VDE 0411-1) 条款:6.4.3;6.7.1.3;6.7.2.1; 6.7.2.2;6.7.3.4.2;6.8.3.1	根据 1577 元件认证和 CSA 元件验收第 5 号计划进行了认证
基础型绝缘	单一绝缘保护
证书编号:待定	文件编号:待定

6.10 安全相关认证(增强型隔离)

VDE	UL
DIN EN IEC 60747-17 (VDE 0884-17)、 EN IEC 60747-17、 DIN EN IEC 62368-1 (VDE 0868-1)、 EN IEC 62368-1、 IEC 62368-1 条款:5.4.3;5.4.4.4;5.4.9	根据 1577 元件认证和 CSA 元件验收第 5 号计划进行了认证
增强型绝缘	单一绝缘保护
证书编号:待定	文件编号:待定

6.11 安全限值 (D 封装)

安全限制⁽¹⁾旨在更大限度地减小在发生输入或输出电路故障时对隔离栅的潜在损害。I/O发生故障时会导致低电阻接地或连接 到电源,如果没有限流电路,则会因为功耗过大而导致芯片过热并损坏隔离栅,甚至可能导致辅助系统出现故障。

	参数	测试条件	最小值	典型值	最大值	单位
I _S	安全输入、输出或电源电流	R $_{\theta}$ _{JA} = 116.5°C/W , VDDx = 5.5V , T _J = 150°C , T _A = 25°C			195	mA
Ps	安全输入、输出或总功率	R $_{\theta}$ $_{JA}$ = 116.5°C/W , T_J = 150°C , T_A = 25°C			1070	mW
Ts	最高安全温度				150	°C

(1) 最高安全温度 T_S 与器件指定的最大结温 T_J 的值相同。I_S 和 P_S 参数分别表示安全电流和安全功率。请勿超过 I_S 和 P_S 的最大限值。 这些限值随着环境温度 T_A 的变化而变化。 "热性能信息"表中的结至空气热阻 R_{0 JA} 是安装在含引线的表面贴装封装的 高 K 测试板上的器件的热阻。可使用以下公式来计算各个参数的值: T_J = T_A + R_{0 JA} × P, 其中, P 为器件上消耗的功率。 T_{J(max)} = T_S = T_A + R_{0 JA} × P_S, 其中, T_{J(max)} 为最大结温。 P_S = I_S × VDD_{max}, 其中 VDD_{max} 为最大低侧电压。

6.12 安全限值 (DWV 封装)

安全限制⁽¹⁾旨在更大限度地减小在发生输入或输出电路故障时对隔离栅的潜在损害。I/O 发生故障时会导致低电阻接地或连接 到电源,如果没有限流电路,则会因为功耗过大而导致芯片过热并损坏隔离栅,甚至可能导致辅助系统出现故障。

	参数	测试条件	最小值	典型值	最大值	单位
I _S	安全输入、输出或电源电流	R $_{\theta}$ _A = 102.8°C/W , VDDx = 5.5V , T_J = 150°C , T_A = 25°C			220	mA
Ps	安全输入、输出或总功率	R $_{\rm \theta \ JA}$ = 102.8°C/W , T_J = 150°C , T_A = 25°C			1210	mW
Τ _S	最高安全温度				150	°C

(1) 最高安全温度 T_S 与器件指定的最大结温 T_J 的值相同。I_S 和 P_S 参数分别表示安全电流和安全功率。请勿超过 I_S 和 P_S 的最大限值。 这些限值随着环境温度 T_A 的变化而变化。 "热性能信息"表中的结至空气热阻 R_{0 JA} 是安装在含引线的表面贴装封装的 高 K 测试板上的器件的热阻。可使用以下公式来计算各个参数的值: T_J = T_A + R_{0 JA} × P, 其中, P 为器件上消耗的功率。 T_{J(max)} = T_S = T_A + R_{0 JA} × P_S, 其中, T_{J(max)} 为最大结温。 P_S = I_S × VDD_{max}, 其中 VDD_{max} 为最大低侧电压。

6.13 电气特性

最小值和最大值规格条件为 T_A = −40°C 至 +125°C、VDD1 = 3.0V 至 5.5V、VDD2 = 3.0V 至 5.5V、SNSN = GND1、V_{INP} = −0.1V 至 2V(除非另有说明);典型规格条件为 T_A = 25°C、VDD1 = 5V 和 VDD2 = 3.3V

	参数	测试条件	最小值	典型值	最大值	单位	
模拟输入		· · · · · · · · · · · · · · · · · · ·					
C _{IN}	输入电容			2		pF	
R _{INP}	输入阻抗	INP 引脚至 GND1	0.05	2.4		GΩ	
I _{IB, INP}	输入偏置电流 ⁽¹⁾	INP 引脚,INP = GND1	-10	±3	10	nA	
СМТІ	共模瞬态抗扰度		150			V/ns	
模拟输出							
	标称增益			1		V/V	
V _{CMout}	输出共模电压		1.39	1.44	1.50	V	
V _{CLIPout}	削波差分输出电压	$V_{OUT} = (V_{OUTP} - V_{OUTN});$ $V_{IN} > V_{Clipping}$		2.49		V	
VFAILSAFE	失效防护差分输出电压	VDD1 欠压或 VDD1 缺失		-2.6	-2.5	V	
R _{OUT}	输出电阻	OUTP 或 OUTN		<0.2		Ω	
	输出短路电流	在 OUTP 或 OUTN 上,拉出或灌入, INP = GND1,输出短接至 GND2 或 VDD2		11		mA	
直流精度							
V _{OS}	输入失调电压(1)(2)	T _A = 25°C	-0.8	±0.1	0.8	mV	
TCV _{OS}	输入失调电压热漂移 ^{(1) (2) (4)}		-10	±1	10	μV/°C	
E _G	增益误差 ⁽¹⁾	T _A = 25°C	-0.25%	±0.04%	0.25%		
TCE _G	增益误差漂移 ^{(1) (5)}		-50	±5	50	ppm/°C	
	非线性度		-0.035%	0.002%	0.035%		
	输出噪声	INP = GND1 , BW = 50kHz		200		μV _{RMS}	
		VDD1 直流 PSRR,INP = GND1, VDD1 为 3V 至 5.5V		-77			
PSRR		VDD1 交流 PSRR,INP = GND1, VDD1 具有 10kHz/100mV 纹波	-56			- dB	
PORK	电源抑制比 ⁽²⁾	VDD2 直流 PSRR,INP = GND1, VDD2 为 3V 至 5.5V					
		VDD2 交流 PSRR,INP = GND1, VDD2 具有 10kHz/100mV 纹波	-69			-	
交流精度							
BW	输出带宽		120	145		kHz	
THD	总谐波失真(3)	$V_{INP} = 2V_{PP}$, $V_{INP} > 0V$, $f_{IN} = 10kHz$		-83	-73	dB	
		$V_{\rm INP}$ = $2V_{\rm PP}$, $f_{\rm INP}$ = 1kHz , BW = 10kHz	75	80			
SNR	信噪比	$V_{\rm INP}$ = $2V_{\rm PP}$, $f_{\rm INP}$ = 10kHz , BW = 50kHz	70			dB	
电源							
I _{DD1}	高侧电源电流			4.4	5.6	mA	
I _{DD2}	低侧电源电流			6.2	9.7	mA	
VDD1 _{UV}		VDD1 上升	2.4	2.6	2.8	V	
	高侧欠压检测阈值	VDD1 下降	1.9	2.05	2.2	v	

最小值和最大值规格条件为 T_A = -40℃ 至 +125℃、VDD1 = 3.0V 至 5.5V、VDD2 = 3.0V 至 5.5V、SNSN = GND1、V_{INP} = -0.1V 至 2V (除非另有说明);典型规格条件为 T_A = 25℃、VDD1 = 5V 和 VDD2 = 3.3V

	参数	测试条件	最小值	典型值	最大值	单位
VDD2 _{UV}	化侧反正协测语度	VDD2 上升	2.3	2.5	2.7	
	低侧欠压检测阈值	VDD2 下降	1.9	2.05	2.2	

(1) 典型值包括标称运行条件下的一个标准偏差(σ)。

(2) 此参数以输入为基准。

(3) THD 是前五个高次谐波幅度的均方根和与基波幅度之比。

(4) 使用框方法计算失调电压误差温漂,如以下公式所示:

 TCV_{OS} = (Value_{MAX} - Value_{MIN}) / TempRange
 (5) 使用框方法计算增益误差温漂,如以下公式所示: TCE_G (ppm) = (Value_{MAX} - Value_{MIN}) / (Value_(T=25℃) x TempRange) x 10⁶

6.14 开关特性

在工作环境温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
t _r	输出信号上升时间	10% 至 90%,未滤波输出		2.6		μs
t _f	输出信号下降时间	10% 至 90%,未滤波输出		2.6		μs
	从 V _{INP} 到 V _{OUTx} 的信号延迟 (50% - 10%)	非滤波输出		1.6		μs
	从 V _{INP} 到 V _{OUTx} 的信号延迟 (50% - 50%)	非滤波输出		3.0	3.2	μs
	从 V _{INP} 到 V _{OUTx} 的信号延迟 (50% - 90%)	非滤波输出		4.2		μs
t _{AS}		AVDD 阶跃至 3.0V,DVDD ≥ 3.0V, V _{OUTP} 、V _{OUTN} 有效,0.1% 稳定时间		20		μs

6.15 时序图

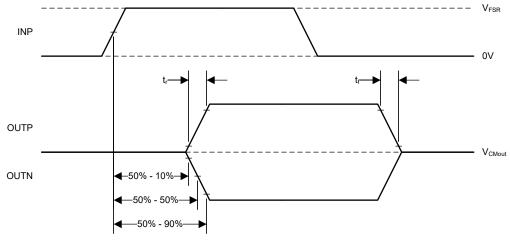
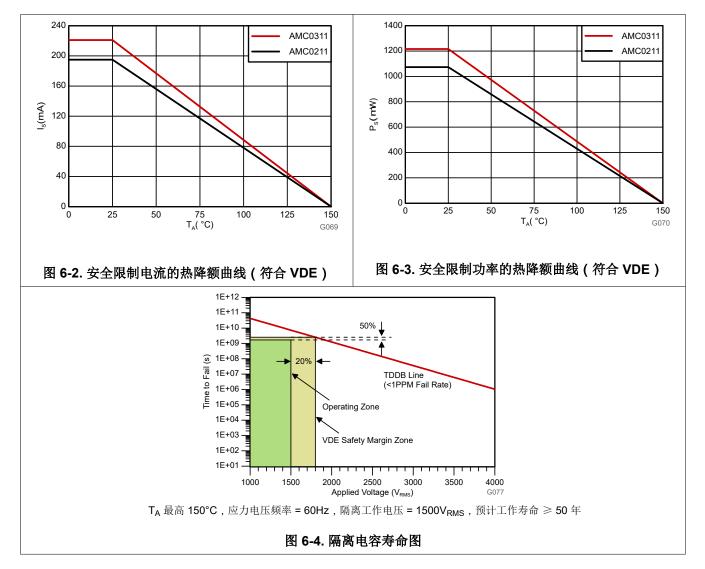
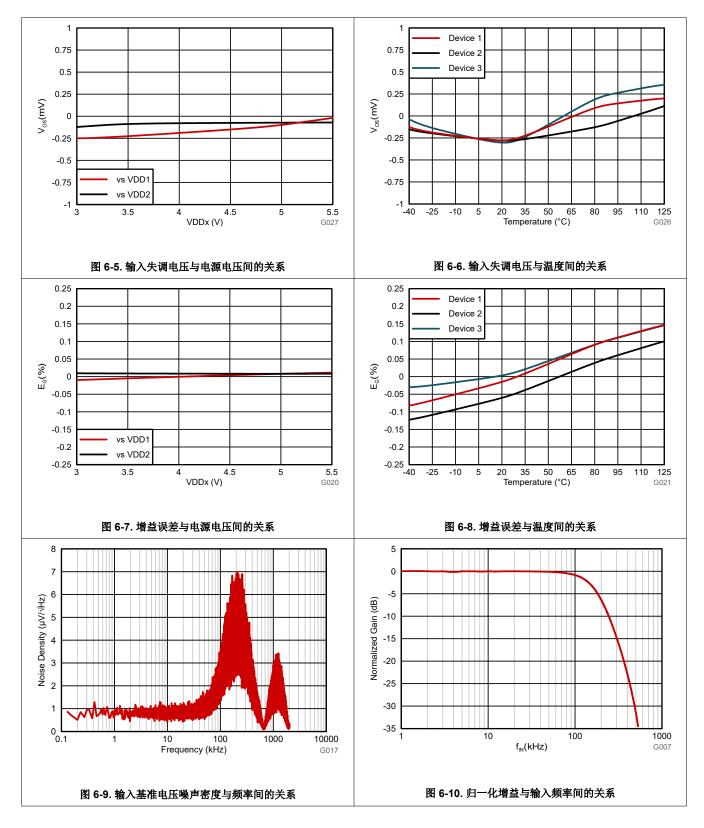
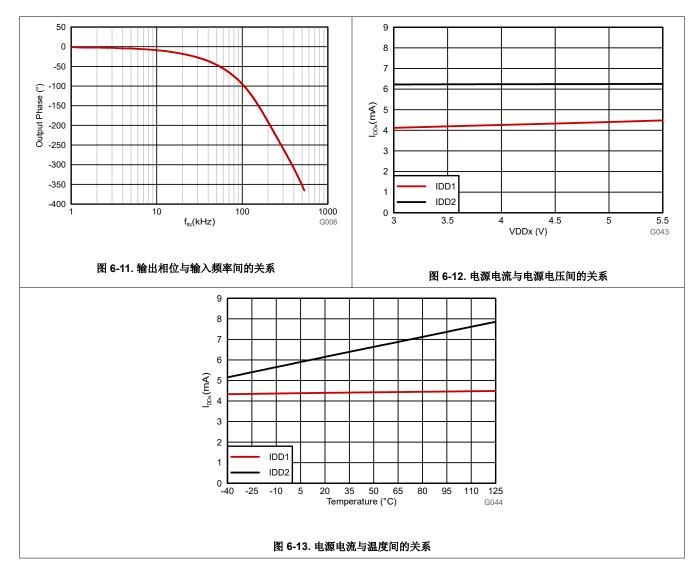



图 6-1. 上升、下降和延迟时间定义


6.16 绝缘特性曲线

6.17 典型特性

条件为:VDD1=5V、VDD2=3.3V、SNSN=GND1、f_{IN}=10 kHz 且 BW=100kHz(除非另有说明)

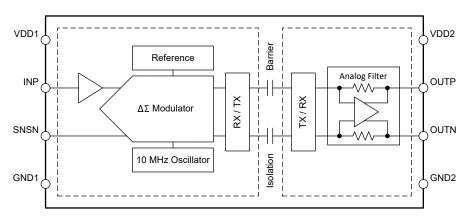


Copyright © 2025 Texas Instruments Incorporated

6.17 典型特性 (续)

条件为:VDD1 = 5V、VDD2 = 3.3V、SNSN = GND1、f_{IN} = 10 kHz 且 BW = 100kHz(除非另有说明)

7 详细说明


7.1 概述

AMC0x11D-Q1 是一款精密的电隔离放大器,具有 2V 高阻抗输入、固定增益和差分输出。该器件的输入级驱动一个二阶 Δ-Σ 调制器。调制器将模拟输入信号转换为数字位流,该位流可跨过用于隔离高侧和低侧的隔离栅进行 传输。

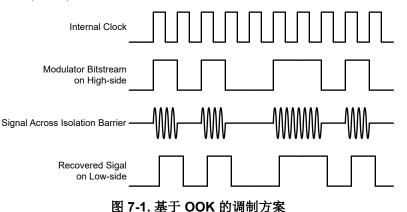
在低侧,接收到的位流由四阶模拟滤波器处理,该滤波器在 OUTP 和 OUTN 引脚输出差分信号。这个差分输出信号与输入信号成正比。

基于 SiO₂ 的电容隔离栅支持高水平的磁场抗扰度,如 *ISO72x 数字隔离器磁场抗扰度* 应用手册中所述。 AMC0x11D-Q1 中使用的数字调制跨过隔离栅传输数据。这种调制方案加上隔离栅的特性,可确保实现高可靠性,并具有高共模瞬态抗扰度。

7.2 功能方框图

7.3 特性说明

7.3.1 模拟输入


INP 引脚的高阻抗输入缓冲器为二阶开关电容器前馈 Δ Σ 调制器供电。调制器将模拟信号转换为通过隔离栅传输 的比特流,如 *隔离通道信号传输* 部分所述。

模拟输入信号受到以下两种限制。首先,如果输入电压超出 *绝对最大额定值*表中指定的输入电压范围,则输入电 流必须限制为 10mA。该限制是器件输入静电放电 (ESD) 二极管导通所致。其次,只有当输入电压保持在线性满 标量程范围 (V_{FSR}) 内时,才能指定线性度和噪声性能。V_{FSR} 在 *建议运行条件*表中提供。

7.3.2 隔离通道信号传输

如图 7-1 中所示, AMC0x11D-Q1 使用开关键控 (OOK) 调制方案跨过基于 SiO₂ 的隔离栅传输调制器输出位流。 发送驱动器 (TX) 如 *功能方框图* 中所示。TX 跨过隔离栅发送一个内部生成的高频载波来表示数字一。而 TX 不发 送信号则表示数字 零。AMC0x11D-Q1 内使用的载波标称频率为 480MHz。

隔离栅另一侧的接收器 (RX) 恢复和解调信号,并将输入提供给模拟滤波器。AMC0x11D-Q1 传输通道经过优化,可实现超高共模瞬态抗扰度 (CMTI) 和超低辐射发射。高频载波和 RX/TX 缓冲器开关会导致这些发射。

7.3.3 模拟输出

AMC0x11D-Q1 在 OUTP 和 OUTN 引脚上提供与输入电压成正比的差分模拟输出电压。对于 V_{FSR, MIN} 至 V_{FSR, MAX} 范围内的输入电压,该器件具有线性响应,输出电压等于:

 $V_{OUT} = V_{IN} = (V_{INP} - V_{SNSN})$

(1)

在零输入端,两个引脚输出相同的共模输出电压 V_{CMout},如*电气特性* 表中所指定。对于大于 |V_{FSR} | 但小于 | V_{Clipping}] 的绝对输入电压,差分输出电压的幅度会继续增加,但线性性能会降低。输出在 V_{CLIPout} 的差分输出电压 处饱和,如图 7-2 所示 (如果输入电压超过 V_{Clipping} 值)。

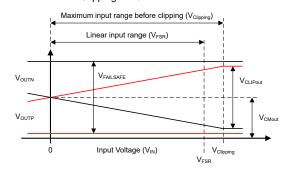


图 7-2. AMC0x11D-Q1 的输入到输出传递曲线

AMC0x11D-Q1 输出提供失效防护功能,可简化系统级诊断。图 7-2 展示了失效防护模式中的行为,其中 AMC0x11D-Q1 输出在正常工作条件下不会出现的负差分输出电压。在以下情况下,失效防护输出激活:

- 当 AMC0x11D-Q1 器件的高侧电源 VDD1 缺失时
- 当高侧电源 VDD1 降至低于欠压阈值 VDD1_{UV} 时

使用最大 VFAILSAFE 电压 (在 电气特性 表中指定)作为系统级失效防护检测的基准值。

7.4 器件功能模式

AMC0x11D-Q1 在以下其中一种状态下运行:

- 关断状态:低侧电源 (VDD2) 低于 VDD2_{UV} 阈值。器件无响应。OUTP 和 OUTN 处于高阻态状态。在内部, OUTP 和 OUTN 由 ESD 保护二极管钳位到 VDD2 和 GND2。
- 高侧电源缺失:器件的低侧 (VDD2) 已供电处于建议运行条件下。高侧电源 (VDD1) 低于 VDD1_{UV} 阈值。器件 输出 V_{FAILSAFE} 电压。
- 模拟输入超范围(正满标量程输入): VDD1 和 VDD2 处于建议运行条件下,但模拟输入电压 V_{IN} 高于最大削 波电压 V_{Clipping, MAX}。器件输出正 V_{CLIPout}。
- 模拟输入欠范围(负满标量程输入): VDD1 和 VDD2 处于建议运行条件下,但模拟输入电压 V_{IN} 低于最小削 波电压 V_{Clipping, MIN}。器件输出不明确的负差分电压。
- 正常运行: VDD1、VDD2 和 VIN 处于建议运行条件内。器件输出与输入电压成正比的差分电压。

表 7-1 列出了运行模式。

运行条件	VDD1	VDD2	V _{IN}	器件 响应
关闭	无关	VDD2 < VDD2 _{UV}	无关	OUTP 和 OUTN 处于高阻态状态。在内部, OUTP 和 OUTN 由 ESD 保护二极管钳位到 VDD2 和 GND2。
高侧电源缺失	VDD1 < VDD1 _{UV}	有效 ⁽¹⁾	无关	器件输出 V _{FAILSAFE} 电压。
输入超范围	有效 ⁽¹⁾	有效 ⁽¹⁾	V _{IN} > V _{Clipping, MAX}	器件输出正 V _{CLIPout} 。
输入欠范围	有效 ⁽¹⁾	有效 ⁽¹⁾	$V_{IN} < V_{Clipping, MIN}$	器件输出不明确的负差分电压。
正常运行	有效 ⁽¹⁾	有效 ⁽¹⁾	有效 ⁽¹⁾	器件输出与输入电压成正比的差分电压。

表 7-1. 器件运行模式

(1) "有效"表示在建议运行条件内。

8 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

8.1 应用信息

牵引逆变器等汽车电源系统分为两个或更多彼此电隔离的电压域。例如,高压域包括混合动力汽车电池和牵引逆 变器的功率级。低压域包括系统控制器和人机界面。出于安全原因,控制器必须测量直流总线电压的值,同时保 持与高压域的电隔离。凭借高阻抗输入和电隔离输出,AMC0x11D-Q1可实现此测量。

8.2 典型应用

以下是典型应用图 所示为牵引逆变器的简化原理图。AMC0x11D-Q1 器件用于直流总线电压检测。在电源域中, 直流总线电压在高阻抗电阻分压器的底部电阻器 (RSNS) 上分压至 2V 电平。AMC0x11D-Q1 检测 RSNS 两端的 电压。低侧栅极驱动器电源被调节至 5V 电平,为 AMC0x11D-Q1 的高压侧供电。在隔离栅另一侧的信号域中, AMC0x11D-Q1 输出一个与直流总线电压成正比的电压。

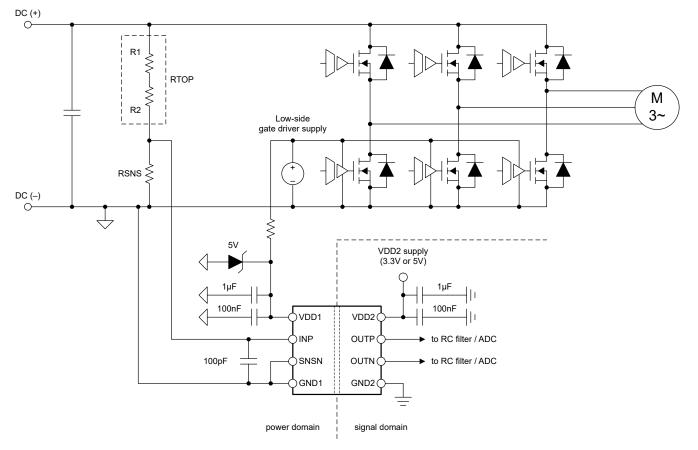


图 8-1. 在典型应用中使用 AMC0x11D-Q1

8.2.1 设计要求

表 8-1 列出了此典型应用的参数。

表 8-1. 设计要求						
参数	值					
直流总线电压	960V(最大值)					
高侧电源电压	5V					
低侧电源电压	3.3V					
电阻器最大工作电压	125V					
检测电阻器 (RSNS) 两端的压降 (用于实现线性响应)	2V(最大值)					
流经电阻分压器的电流,I _{CROSS}	200 µ A(最大值)					

8.2.2 详细设计过程

最大直流总线电压 (960V) 下的 200 µ A 交叉电流要求决定了电阻分压器的总阻抗为 4.80M Ω。电阻分压器的阻抗 由顶部决定, 图 8-1 中的示例为 R1 和 R2。单位电阻允许的最大压降规定为 125V。因此,电阻分压器顶部的最 小单位电阻数量为 960V / 125V ≅ 8。计算出的单位值为 4.80M Ω/8 = 600k Ω, E96 系列中下一个最接近的值为 604k Ω。检测电阻 (RSNS) 的大小应确保最大直流总线电压 (960V) 时电阻器上的压降等于线性 V_{FSR} 。 AMC0x11D-Q1 的线性 V_{FSR} 值为 2V。此电阻的计算公式为:RSNS = V_{FSR} / ($V_{DC-link, MAX} - V_{FSR}$) × R_{TOP} 。 R_{TOP} 是顶部电阻器串的总值 (8 × 604k Ω = 4.832M Ω)。计算得出的 RSNS 等于 10.09k Ω。E96 系列下一个最接近的值为 近的值为 10k Ω。

表 8-2 总结了电阻分压器的设计。

参数	值
单位电阻值, R _{TOP}	604k Ω
R _{TOP} 中的单位电阻数 =	8
检测电阻值,RSNS	10k Ω
总电阻值 (R _{TOP} + RSNS)	4.842M Ω
通过电阻分压器产生的电流,I _{CROSS}	198.3 µ A
检测电阻 RSNS 两端产生的满标量程压降	1.983V
R _{TOP} 单位电阻中耗散的峰值功率	23.7mW
电阻分压器中耗散的总峰值功率	190.3mW

表 8-2. 电阻器值示例

8.2.2.1 输入滤波器设计

在器件之前放置一个 RC 滤波器可提高信号路径的信噪比性能。当频率接近 ΔΣ 调制器采样频率 (通常为 10MHz)时,调制器会将输入噪声折返至低频范围内。使用 RC 滤波器的目的是将高频噪声衰减至低于测量所需 的噪声水平。在实践中,比调制器频率低两个数量级的截止频率可以产生良好的效果。

大多数电压检测应用在隔离式调制器之前使用高阻抗电阻分压器来降低输入电压。在这种情况下,单个电容器(如图 8-2 所示)足以对输入信号进行滤波。对于 (R1 + R2) >> RSNS,输入滤波器的截止频率为 1 / (2 × π × RSNS × C5)。例如,RSNS = 10kΩ 且 C5 = 100pF 时,截止频率为 160kHz。

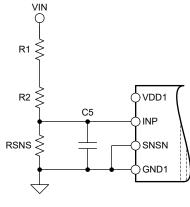
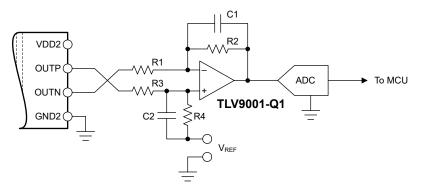



图 8-2. 输入滤波器

8.2.2.2 差分至单端输出转换

许多系统使用具有单端输入的 ADC,无法直接连接到 AMC0x11D-Q1 器件的差分输出。图 8-3 展示了一个将差分输出信号转换为 ADC 前面的单端信号的电路。当 R1 = R3 且 R2 = R4 时,输出电压等于 (R2/R1) × ($V_{OUTP} - V_{OUTN}$) + V_{REF} 。当 C1 = C2 时,滤波器的带宽变为 1/(2 × π × C1 × R1)。根据系统的带宽要求配置该滤波器级的带宽。为了获得出色线性度,请使用具有低电压系数的电容器,例如 NP0 型电容器。对于大多数应用,R1 = R2 = R3 = R4 = 3.3kΩ 和 C1 = C2 = 330pF 可产生良好的性能。

图 8-3. 将 AMC0x11D-Q1 输出连接到单端输入 ADC

更多有关设计 SAR ADC 滤波级和驱动级的一般过程的信息,请参阅*经优化可实现更低失真和噪声的 18 位、 1MSPS 数据采集块 (DAQ)和经优化可实现更低功耗的 18 位数据采集块 (DAQ)* 参考指南 (可从 www.ti.com 下 载)。

8.2.3 应用曲线

图 8-4 显示了 AMC0x11D-Q1 的典型满量程阶跃响应。

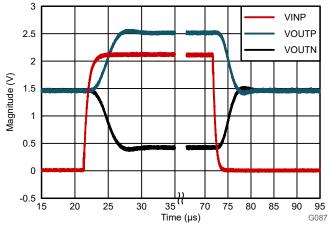


图 8-4. AMC0x11D-Q1 的阶跃响应

8.3 最佳设计实践

AMC0x11D-Q1 器件通电时,请勿使其模拟输入端(INP 引脚)保持断开(悬空)状态。如果该器件的输入保持 悬空,则该器件的输出无效。

请勿将保护二极管连接到 AMC0x11D-Q1 的输入端(INP 引脚)。二极管漏电流可能会引入显著的测量误差,尤 其是在高温下。输入引脚由 ESD 保护电路和外部电阻分压器的高阻抗实施保护,防止受高电压损坏。

8.4 电源相关建议

在典型应用中,AMC0x11D-Q1的高侧电源 (VDD1)由隔离式直流/直流转换器从低侧电源 (VDD2) 生成。一种低成本的方案基于推挽式驱动器 SN6501-Q1 和支持所需隔离电压额定值的变压器。

AMC0x11D-Q1 无需任何特定的上电时序。高侧电源 (VDD1) 通过与低 ESR、1µF 电容器 (C2) 并联的低 ESR、100nF 电容器 (C1) 进行去耦。低侧电源 (VDD2) 同样通过与低 ESR、1µF 电容器 (C4) 并联的低 ESR、100nF 电容器 (C3) 进行去耦。将所有四个电容器 (C1、C2、C3 和 C4) 尽可能靠近器件放置。图 8-5 展示了 AMC0x11D-Q1 的去耦图。

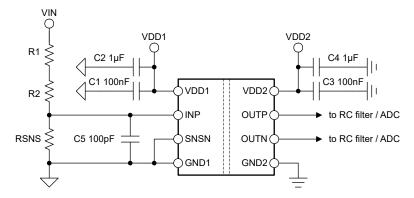
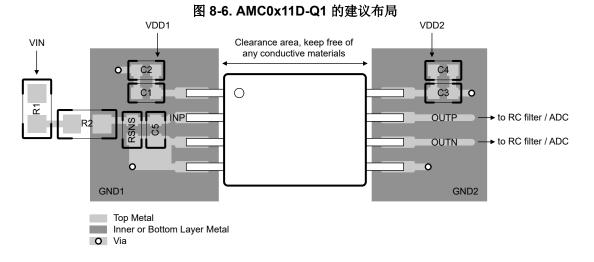


图 8-5. AMC0x11D-Q1 去耦


在应用中出现的适用直流偏置条件下,确保电容器能够提供足够的 有效 电容。在实际条件下,通常仅使用多层陶 瓷电容器 (MLCC) 标称电容的一小部分。在选择这些电容器时,应考虑到这个因素。此问题在低厚度电容器中尤 为严重,在该类电容器中,电容器越薄,电介质电场强度越大。知名电容器制造商提供了电容与直流偏置关系曲 线,这大大简化了元件的选型。

8.5 布局

8.5.1 布局指南

*布局*部分详细说明了布局建议,其中去耦电容器的放置尤为关键(尽可能靠近 AMC0x11D-Q1 电源引脚)。这个 示例还说明了器件所需的其他元件的放置方式。

8.5.2 布局示例

Copyright © 2025 Texas Instruments Incorporated

9 器件和文档支持

9.1 文档支持

9.1.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), 隔离相关术语 应用手册
- 德州仪器 (TI), 半导体和 IC 封装热指标 应用手册
- 德州仪器 (TI), /SO72x 数字隔离器磁场抗扰度 应用手册
- 德州仪器 (TI), TLV900x-Q1 低功耗、RRIO、1MHz 汽车运算放大器 数据表
- 德州仪器 (TI), SN6501-Q1 隔离式电源用变压器驱动器 数据表
- 德州仪器 (TI), 经优化可实现更低失真和噪声的 18 位、1-MSPS 数据采集块 (DAQ) 参考指南
- 德州仪器 (TI), 经优化可实现超低功耗的 18 位、1MSPS 数据采集块 (DAQ) 参考指南
- 德州仪器 (TI), 隔离放大器电压检测 Excel 计算器 设计工具

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 商标

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision * (October 2024) to Revision A (May 2025)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式	1
•	器件状态从 <i>预告</i> 更改为量产	1

11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知, 且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

11.1 机械数据

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
AMC0311DQDWVRQ1	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	C0311D-Q
PAMC0311DQDWVRQ1	Active	Preproduction	SOIC (DWV) 8	1000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
PAMC0311DQDWVRQ1.A	Active	Preproduction	SOIC (DWV) 8	1000 LARGE T&R	-	Call TI	Call TI	See	
								PAMC0311DQDWVRQ1	
PAMC0311DQDWVRQ1.B	Active	Preproduction	SOIC (DWV) 8	1000 LARGE T&R	-	Call TI	Call TI	See	
								PAMC0311DQDWVRQ1	

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

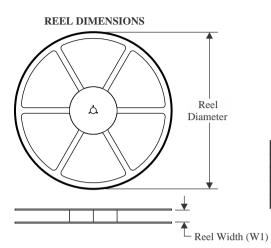
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

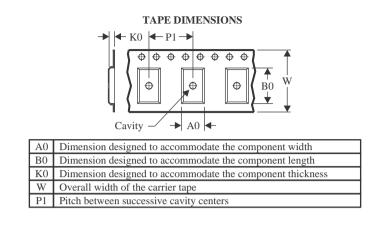
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

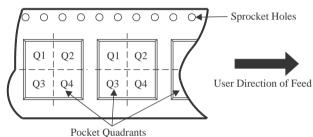
www.ti.com

OTHER QUALIFIED VERSIONS OF AMC0311D-Q1 :

Catalog : AMC0311D

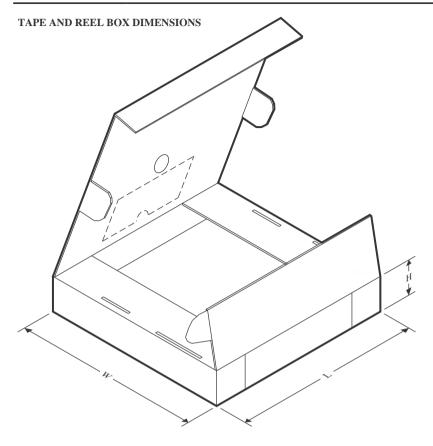

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal													
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	AMC0311DQDWVRQ1	SOIC	DWV	8	1000	330.0	16.4	12.15	6.2	3.05	16.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Jul-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
AMC0311DQDWVRQ1	SOIC	DWV	8	1000	356.0	356.0	35.0	

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司