

ZHCS314 -SEPTEMBER 2009 www.ti.com.cn

用于数字化 X 射线探测器的 64 通道模拟前端

查询样品: AFE0064

特性

- 64 个通道
- 28.32µs 最小扫描时间 (包括所有 64 个通道的积 分和数据传输)
- 7.5MHz 最大数据传输速率
- 噪声 824 e-RMS (采用 30pF 传感器电容器,在 1.2pC 充电量范围)
- 积分非线性: 全标度范围 (FSR) 的 ±0.006%
- 8 种可调的全标度范围 (0.13pC [最小值] 至 9.5pC [最大值])
- 内置 CDS (信号采样 失调采样)
- 可选的积分升/降模式
- 低功耗: 175mW
- NAP (打盹) 模式: 49.5mW
- 14mmx 14mm 128 引脚 TQFP 封装

应用

- 数字 X 线摄影
- CT 扫描仪
- 行李扫描仪
- 红外光谱学

说明

AFE0064 是一款 64 通道模拟前端, 专为适合基于平 板检测器的数字 X 射线系统的要求而设计。

该器件包括 64 个积分器、一个用于全标度充电量 (charge level) 选择的可编程增益放大器 (PGA)、相关 双采样器、64:2 多路复用器以及两个差分输出驱动

硬件可选的积分极性实现了正电荷或负电荷的积分,并 在系统设计中提供了更大的灵活性。 此外,该器件还 具有 TFT (来自平板检测器的薄膜晶体管) 电荷注入 补偿功能。 此项功能有助于最大限度地拓展器件的可 用信号电荷范围。

"打盹"特性可实现大幅度的节省。 在长时间暴露于 X 射线的过程中,这尤其适用于节省功率。

AFE0064 采用 128 引脚 TQFP 封装。

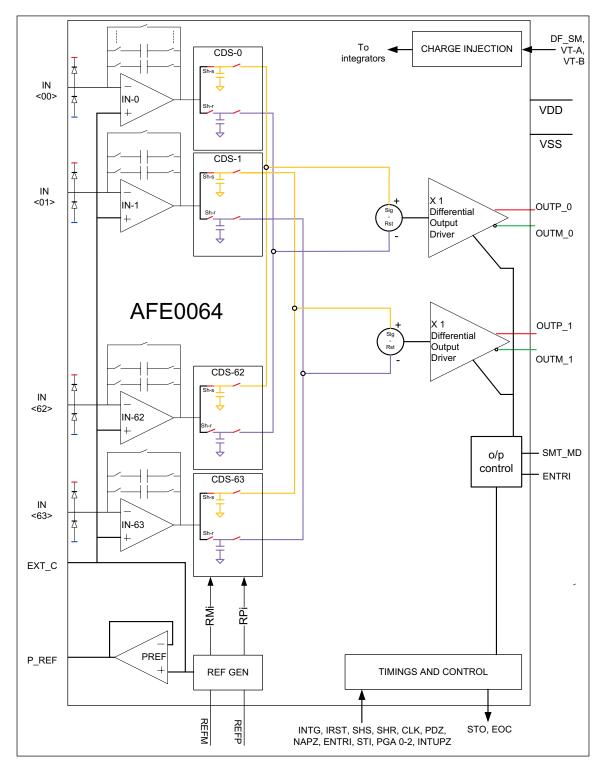
订购信息(1)

模型	积分线性 (FS 的 %)	耗散功率	最小扫描时间 (µs)	通道数量	封装类型	封装指示符	温度范围	订购信息	运输载体数量
AFE0064	0.006	175 mW	28.32	64	TQFP	PBK	40 to 95°C	AFE0064IPBK	90(5+1)
AFEUU04	0.006	175 11100	20.32	04	TQFF	PBK	–40 to 85°C	AFE0064IPBKR	1000

(1) 如欲了解最新封装及订购信息,敬请查看本文档末的"封装选项附录",或登录 TI 网站: www.ti.com。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ZHCS314 -SEPTEMBER 2009 www.ti.com.cn



这些装置包含有限的内置 ESD 保护。

存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

FUNCTIONAL BLOCK DIAGRAM

www.ti.com.cn ZHCS314 -SEPTEMBER 2009

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE / UNIT
IN <n> to VSS</n>		-0.3 V to +VDD + 0.3 V
VDD to AGND		–0.3 V to 5 V
Digital input voltage to GND		-0.3 V to (+VDD + 0.3 V)
Digital output to GND		-0.3 V to (+VDD + 0.3 V)
Operating temperature range		-40°C to 85°C
Storage temperature range		–65°C to 150°C
Junction temperature (T _J max)	150°C
TOFD = (2)	Power dissipation	(T _J max – T _A)/ θJA
TQFP package ⁽²⁾	θJA Thermal impedance	45°C/W

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

 $T_A = 25$ to 85° C, +VDD = 3.3 V, $f_{CLK} = 15$ MHz for sequential mode and 3.75 MHz for simultaneous mode, scan time = 28.32us (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT RANGE		,			
Range 0			0.13		ρС
Range 1			0.25		ρС
Range 2			0.5		ρC
Range 3			1.2		ρС
Range 4			2.4		ρС
Range 5			4.8		ρС
Range 6			7.2		ρС
Range 7			9.6		ρС
Input current			30		μΑ
Integrator positive input voltage		1.66	1.68	1.70	V
ANALOG OUTPUT				•	
Differential full scale analog output	For all ranges	–(REFP- REFM)	±1.4	(REFP- REFM)	V
Output common-mode voltage (REFP+REFM)/2			1.55		

⁽²⁾ Device confirms to MSL level 3 at 260°C as per JEDEC -033.

SPECIFICATIONS (接下页)

 $T_A = 25$ to 85° C, +VDD = 3.3 V, $f_{CLK} = 15$ MHz for sequential mode and 3.75 MHz for simultaneous mode, scan time = 28.32 µs (unless otherwise noted)

us (unless otherwise noted)	TEST COMPLETIONS	BAILI	TVP	1147	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ACCURACY	- (A)			1	
	C-sensor ⁽¹⁾ 1= 30 pF, Range 3, 14 µSec integration time	824			
Noise in electrons referred to input of integrator	C-sensor ⁽¹⁾ = 20 pF, Range 3 14 μ Sec integration time		600		e-
	C-sensor ⁽¹⁾ = 30 pF, Range 3, 270 µSec integration time		1400		
Integral nonlinearity			±0.006		% of FSR ⁽²⁾
Analog input channel leakage current	This current is integrated and reflects as a part of offset error.		2		рA
Channel to channel full-scale error matching	For ranges 3 to 7		±0.7		% of FSR ⁽²⁾
Offset error	Device output offset, resulting from integration of input leakage current		±0.07		% of FSR ⁽²⁾
Channel to channel offset error matching			±0.07		% of FSR ⁽²⁾
Integrator input offset:(difference between integrator positive and negative terminal)	Integrator input offset mean across channels		±0.002		mV
Integrator input offset matching across channels	±3 sigma limit of integrator input offset across channels		±1.5		mV
Channel to channel crosstalk	Aggressor channel with full scale charge to next adjacent channel		0.08		% of FSR ⁽²⁾
EXTERNAL REFERENCE INPUT					
REFP		2.24	2.25	+VDD - 0.85	V
REFM		0.84	0.85	0.86	V
Input current			50		nA
P_REF output			1.68		V
P_REF current source capacity			±1		mA
POWER SUPPLY REQUIREMENTS					
Power supply voltage, +VDD		3.2	3.3	3.6	
_	During operation		53	58	mA
Power supply current	During NAP		15		mA
Power up time from NAP			10		μSec
DIGITAL INPUT OUTPUT					
Logic levels					
V _{IH}		0.8×VDD		VDD+0.1	
V _{IL}		-0.1		0.2×VDD	
V _{OH}	I _{OH} = -500 μA	VDD-0.4			
V _{OL}	I _{OL} = 500 μA			0.4	
TEMPERATURE RANGE					
Operating free air		0		85	°C
٠		•			

⁽¹⁾ C-Sensor is total external capacitance seen at IN(x) pin. This includes capacitance of all the TFT switches connected to that node and the routing capacitance.

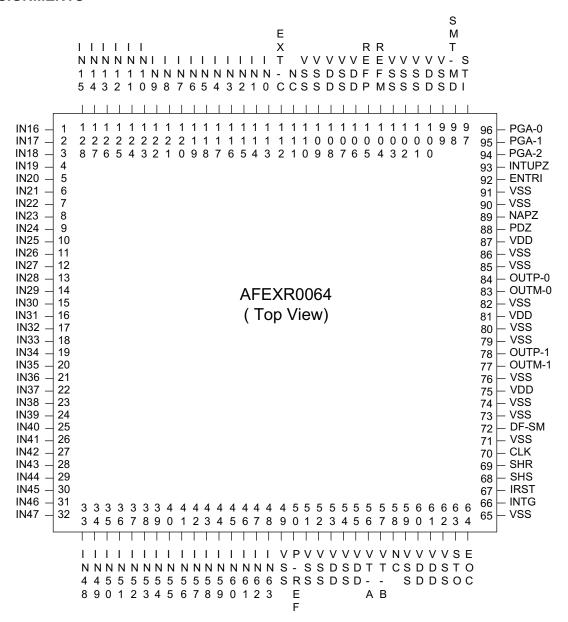
⁽²⁾ FSR is full-scale range. There are eight ranges from 0.13 pC to 9.6 pC.

www.ti.com.cn

TIMING REQUIREMENTS

 $T_A = 0 \text{ to } 85^{\circ}\text{C}, +VDD = 3.3 \text{ V}$

	PARAMETER	MIN	TYP	MAX	UNIT
SAMPLING AND C	ONVERSION RELATED				
t-scan	Scan time, See 图 1, 图 7	28.3 2		See (1)	μSec
t1	IRST, SHR, SHS, STI high duration, See 图 1, 图 7	30			nSec
t2	Setup time, STI falling edge to first clock rising edge, See 图 1, 图 7	30			nSec
t2	Setup time, IRST falling edge to first clock rising edge, See 图 1, 图 7	30			nSec
t3	Delay time, 133 rd clock rising edge to SHR rising edge, See 图 1, 图 7	400			nSec
t4	Delay time, SHR rising edge to INTG rising edge, See 图 1, 图 7	30			nSec
t5	INTG high duration (TFT on time), See 图 1, 图 7	14		See (2)	μSec
t6	Delay time, INTG falling edge to SHS rising edge, See 图 1, 图 7	4.5			μSec
t7	Delay time, SHS rising edge to IRST rising edge, See 图 1	30			nSec
t8	Delay time, SHS rising edge to STI rising edge, See 图 1, 图 7	30			nSec
t9	Hold time, STI falling edge to IRST falling edge, See 图 1, 图 7	10			nSec
In sequential mode	01-1 (011) (1		15	N 41 1-
In simult mode	Clock (CLK) frequency	0.25		3.75	MHz
	OUTP or OUTM settling time to 16 bit accuracy with 30 pF load and full scale step			375	nSec
	OUTP or OUTM settling time to 16 bit accuracy with 15 pF load and full scale step			250	nSec


⁽¹⁾ See max specification for t5 and minimum specification for CLK frequency. Also see the section Running the Device at Higher Scan Time.

⁽²⁾ There is no real limit on maximum integration time, however as integration time increases the offset value changes due to integration of leakage current (2 pA typical) also the 1/f noise contribution to output increases, refer to the typical noise numbers at 14 and 270 μSec integration time in the Specifications table and also see 28.

DEVICE INFORMATION

PIN ASSIGNMENTS

PIN FUNCTIONS

P	PIN		PIN I/O		DESCRIPTION	
NUMBER	NAME	1/0	DESCRIPTION			
	ANALOG INPUT PINS					
113128	IN<0> IN<15>	- · · · · · · · · · · · · · · · · · · ·				
1 48	IN<16> IN<63>	I				
			DIFFERENTIAL ANALOG OUTPUT PINS			
84	OUTP-0	0	Driver 0-analog output positive terminal			
83	OUTM-0	0	O Driver 0-analog output negative terminal			
Driver 0 output	ts analog data f	or channe	els 31 to 0			

PIN FUNCTIONS (接下页)

P	IN	1/0	DESCRIPTION
NUMBER	NAME	1/0	DESCRIPTION
78	OUTP-1	0	Driver 1-analog output positive terminal
77	OUTM-1	0	Driver 1-analog output negative terminal
Driver 1 outpu	ts analog data f	or channe	els 63 to 32
Note that the o	device output is	differentia	al (OUTP-OUTM) with common mode of (OUTP+OUTM)/2
			REFERENCE
105	REFP	I	Positive reference input
104	REFM	I	Negative reference input
Decouple REF at output termi		erminals to	o VSS with suitable capacitor and use low noise reference, noise on these terminals will add to noise
112	EXT_C	0	Terminal available for decoupling internally generated integrator common-mode voltage (1.68 V). Decouple this pin to VSS with 1 μ F ceramic capacitor. Internally connected to +ve terminals of all 64 integrators.
50	P_REF	0	Internally generated 1.68 V reference output available for referencing photodiode cathodes.
			CONTROL PINS
63	STO	0	Delayed ST for cascading next ASIC
64	EOC	0	End of data shifting, EOC is low during data read.
66	INTG	I	Filter bandwidth control for Signal sample (SHS). Filter BW is high when this signal is high and filter BW is low when this signal is low. Typically this signal should go high with TFT switch turn or and should go low ~0.5 µSec after TFT switch off.
67	IRST	I	Resets the integrator capacitors on rising edge of this input.
68	SHS	I	Device samples 'signal' level of integrator output(0 to 63) onto the respective CDS on rising edge of this input.
69	SHR	I	Device samples 'reset' level of integrator output (0 to 63) onto the respective CDS on rising edge of this input.
70	CLK	I	For simultaneous mode: Device serially outputs the analog voltage from each integrator channel on each rising edge of CLK.
			For sequential mode: Device serially outputs the analog voltage from each integrator channel on every fourth rising edge of CLK.
88	PDz	- 1	Low level puts device in powerdown mode.
89	NAPz	- 1	Low level puts device in NAP mode, this is useful for power saving during X-ray exposure period.
92	ENTRI	I	High on this pin enables 3-state of analog output drivers after shift out of data for all 64 channels.
97	STI	I	Rising edge resets the channel counter. Falling edge enables data transfer on OUTP and OUTM terminals.
			PGA-I/P RANGE SELECTION
94	PGA-2	I	Selects eight different analog input ranges. Three bit word with these three bits represents binary
95	PGA-1	1	number corresponding to Analog Input Range. PGA-2 is MSB and PGA-0 is LSB. Example 000 is range 0 and 100 is range 4.
96	PGA-0	1	a lange o and 100 is range 4.
	*	•	MODE SELECTION
93	INTUPz	I	High level selects 'integration-down' mode. In this mode device integrates positive pixel current into each channels, starting from reset level (REFP) down to REFM low level selects 'integration-up' mode. In this mode the device integrates negative pixel current into each channel, starting from reset level (REFM) up to REFP.
98	SMT-MD	I	High level selects simultaneous mode. Device outputs data simultaneously on both differential output drivers OUTP-OUTM<0> and OUTP-OUTM<1> in this mode.
			Low level on this input selects sequential mode. In this mode device output data for driver 0 is skewed by two clocks from driver 1. This is useful when a two channel multiplexed ADC is used after AFE.
	•		POWER SUPPLY
53, 55, 60, 61, 75, 81, 87, 100, 106, 108	VDD	I	Device power supply

PIN FUNCTIONS (接下页)

PIN		1/0	DESCRIPTION				
NUMBER	NAME	1/0	DESCRIPTION				
49, 51, 52, 54, 59, 62, 65, 71, 73, 74, 76, 79, 80, 82, 85, 86, 90, 91, 99, 101, 102, 103, 107, 109, 110	VSS	I	Ground for device power supply				
			TFT CHARGE INJECTION COMPENSATION				
72	DF-SM	I	Digital control to dump compensation charge on integrator capacitor; this is useful to nullify the effect of pixel TFT charge injection.				
56	VT-A	I	External voltage to control the amount of charge dump for TFT charge injection compensation. Charge dump = (V-voltage at 'EXT_C')*0.857 pC where V is external voltage at pins 56, 57. Short pins 56 and 57 externally and apply external voltage for charge injection compensation.				
57	VT-B	I					
	NC PINS						
58, 111			These pins should be connected to VSS.				

DESCRIPTIONS AND TIMING DIAGRAMS



图 1. Integrator Channel Schematic

₹ 1 shows the typical schematic of an integrator channel. As shown, each integrator has a reset (IRST) switch which resets the integrator output to the 'reset-level'. The device integrates input current while this switch is open. There are two sample and hold circuits connected to each integrator output. SHR samples integrator reset level output and SHS samples integrator output post integration of signal charge. The device subtracts the SHR sample from the SHS sample. The difference is then available at device output in a differential format. This action is called 'Correlated Double Sampling' (CDS). CDS removes integrator offset and low frequency noise from device output.

Each sample and hold has a built-in low pass filter. This filter limits sampling bandwidth so as to limit sampled noise to an acceptable level. Detailed functioning of individual blocks is described further with timing diagrams.

www.ti.com.cn

IRST \rightarrow t1 \leftarrow SHS \rightarrow t1 \leftarrow TFT ON (t5) \sim 0.5 uSec \rightarrow t1 \leftarrow SHS \rightarrow TFT ON (t5) \sim 0.5 uSec \rightarrow t1 \leftarrow SHS \rightarrow t1 \leftarrow SHS \rightarrow t1 \leftarrow SHS \rightarrow t1 \leftarrow SHS \rightarrow TFT ON (t5) \sim 0.5 uSec \rightarrow t1 \leftarrow SHS \rightarrow TFT ON (t5) \rightarrow \rightarrow TFT O

图 2. Integration and Data Read

As shown in $\boxtimes 2$, the device performs two functions, 'Integration' and 'Data Read' during each scan (indicated by 't-Scan'). Signals IRST, SHR, SHS, INTG, CLK control 'Integration Function' and STI, CLK control 'Data Read Function'. EOC is a device output and a low level on the EOC pin indicates a data read is in progress.

Charge Integration

STI

CLK

EOC

Integration function consists of two phases namely 'Reset' and 'Integration'.

DATA READ

IRST rising edge starts the 'Reset' phase which ends with SHR rising edge. 图 3 shows the detailed timing waveform for the reset phase.

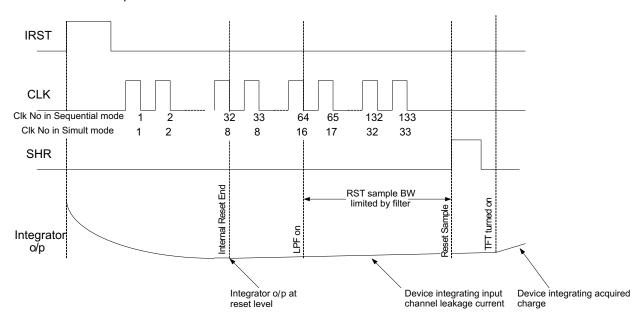


图 3. Timing Diagram Showing Details of Reset Phase

In this phase the device resets all 64 integration capacitors. This reset-level voltage depends on the integration mode (selected by the INTUPz pin). Integrator output is reset to REFM for 'integration-up' mode and is reset to REFP in 'integration-down' mode. Note that the integrator reset switch is on from IRST rising edge to the end of the 32nd clock for sequential mode and up to the 8th clock for simultaneous mode. SHR and filter bypass switches (see 1) are on right from IRST rising edge to the 64th clock falling edge.

In this period, the reset sample capacitor is tracking the integrator output voltage. On the 64th CLK falling edge, the filter bypass switch is opened. This kicks in the low pass filter. The filter has a fixed time constant of 1 μ Sec (160 kHz BW). The device samples and holds (SHR switch opens) the integrator reset output at rising edge of SHR. The low pass filter cuts off high frequency noise during sampling.

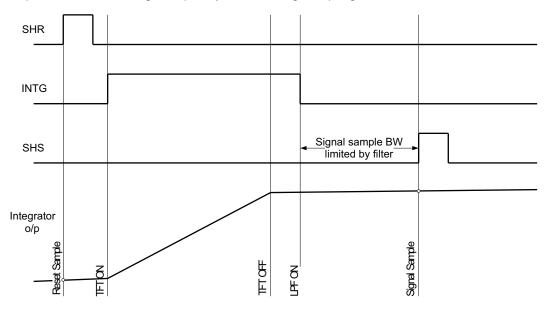


图 4. Timing Diagram Showing Details of Integration Phase

Here after the integration phase starts. The device integrates pixel charge during on time of the external TFT switch. The device integrates pixel charge starting from the reset level (as described previously).

In integration up mode, the integrator output moves up from REFM (reset level). As shown in the Specifications table there are 8 different ranges for the integrator. For any range, the device can linearly integrate input charge until the integrator output reaches REFP.

In integration down mode, the integrator output moves down from REFP (reset level). For any analog input range, the device can linearly integrate input charge until the integrator output reaches REFM.

It is clear that the linear output range for the integrator is 'REFP-REFM' volts. One can calculate the integrator feedback capacitor with formula; Q = CV. Here Q is the specified charge for range '0 to 7' and V is the linear output range of the integrator (REFP-REFM). Refer to $\frac{1}{8}$ 1 for more details.

It is recommended to assert (pull high) the INTG signal along with TFT switch turn on. Note that the TFT switch is external to the device, and the device still integrates without the INTG signal. INTG can be held high for 0.5 μ Sec after TFT switch turn off. This makes sure the SHS low pass filter is bypassed all through integration and for 0.5 μ Sec after integration. This extra 0.5 μ Sec ensures charge injection during TFT switch turn off is settled and the SHS sampling capacitor is tracking the integrator output. As shown in 24, the device turns on the LPF on the falling edge of INTG. Like SHR sampling, this filter has a 1 μ Sec time constant (160kHz BW), and it cuts off high frequency noise during sampling. Timing 't6' in the Timing Requirements table specifies that the settling of voltage on the SHS capacitor is close to the 16 bit level while filter BW is low.

On the rising edge of SHS, the device samples and holds integrator output voltage on the correlated double sampler (CDS). The CDS output voltage is proportional to the difference of the 'SHS' and 'SHR' samples. This scheme removes offset and noise coming from integrator reset. The integration phase ends with the SHS falling edge and data corresponding to all 64 channels is ready to read during the next 'scan'.

Data Read:

Device output is differential even though the integrator output (internal to device) is single ended. Here is the relation between integrator output and AFE0064 output (OUTP and OUTM):

Case 1: (Integrator up mode, INTUPz = 0)

As explained before the device samples the integrator output twice, Reset sample (SHR) and Signal sample (SHS).

ZHCS314 -SEPTEMBER 2009 www.ti.com.cn

$$V_{OUTM} = REFM + (V_{SHS} - V_{SHR})$$

 $V_{OUTP} = REFP - (V_{SHS} - V_{SHR})$

Case 2: (Integrator down mode, INTUPz = 1)

As explained before the device samples the integrator output twice, Reset sample (SHR) and Signal sample (SHS).

$$V_{OUTM} = REFP + (V_{SHS} - V_{SHR})$$

 $V_{OUTP} = REFM - (V_{SHS} - V_{SHR})$

The differential output from the AFE0064 rejects common-mode noise from the board helping to maximize noise performance of the system. The following table provides details of integrator feedback ranges, feedback capacitor, and corresponding AFE0064 output at zero and full scale input charge.

	10	I. AFEUU04 Kang	ge Selec	נוטוו נט ו	Jevice A	nalog Ot	itput ivia	pping		
REFP	2.25	REFP-REFM	1.4							
REFM	0.85	IXEI I -IXEI IVI								
				_	TE UP MOI), e– count			TEGRATE TUPz=1), h	_	
			At 0 ch	arge I/p	At FS cl	harge I/p	At 0 ch	arge I/p	At FS	charge I/p
Range	Typical FS Charge Range (Qr) pC	Int FB Cap= (Qr)/ (REFP-REFM) pF	OUTP	OUTM	OUTP	OUTM	OUTP	OUTM	OUTP	OUTM
0	0.13	0.0929								
1	0.25	0.1786								
2	0.5	0.3571								
3	1.2	0.8571	2.25	0.05	0.05	2.25	0.05	2.25	2.25	0.05
4	2.4	1.7143	2.25	0.85	0.85	2.25	0.85	2.25	2.25	0.85
5	4.8	3.4286								
6	7.2	5.1429								
7	9.6	6.8571								

表 1 ΔFF0064 Range Selection to Device Analog Output Mapping

The following section provides detailed timing of data read. There are two output drivers. Data for channel number 63 to 32 is available on output driver 1 and data for channel number 31 to 0 is available on output driver 0. Data from two drivers can be available simultaneously or sequentially depending on the status of pin SMT_MD.

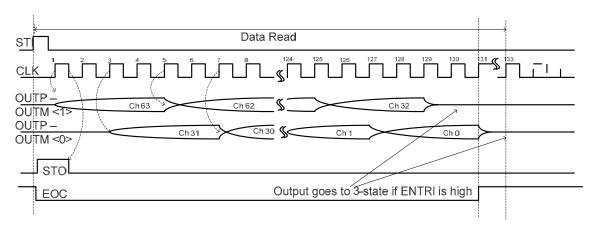


图 5. Device Data Read in Sequential Mode (SMT_MD = 0)

A high pulse on STI activates the data read function and resets the channel counter to zero. As shown in \bigsec 5, the device outputs the analog voltage from channel 63 on the first rising edge of CLK after STI falling edge. Channel 63 to 32 data is available on the OUTP<1> and OUTM<1> terminals. Next the lower output channel is connected to the output after four clocks.

Data on the OUTP<0> and OUTM<0> terminals is skewed by two clocks with respect to OUTP<1> and OUTM<1>. Channel 31 to 0 data is available on the OUTP<0> and OUTM<0> terminals.

The skew between the two output drivers allows the user to connect a two channel multiplexed input ADC to the AFE output.

The device output goes to 3-state after all of the data on the particular differential output driver (0 or 1) is transferred, if ENTRI is tied to high level. Otherwise, both differential output drivers stay at output common-mode voltage after data transfer.

Maximum Data Transfer Rate: As shown in

5, the device outputs new channel data on every alternate rising edge of the clock. Effectively the data transfer rate is one-half of the clock speed. The maximum data transfer rate is 7.5 MHz as the device supports a maximum 15 MHz clock frequency.

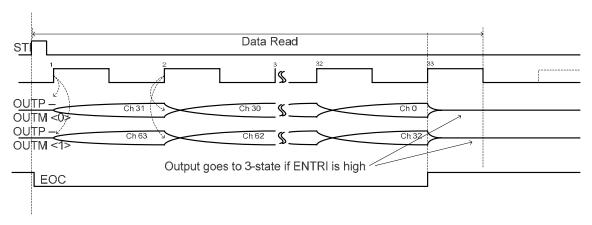


图 6. Device Data Read in Simultaneous Mode (SMT MD=1)

A high level on the 'SIMULT_MODE' pin selects simultaneous mode, the device outputs data simultaneously on both differential output drivers OUTP-OUTM<0> and OUTP-OUTM<1> in this mode. This means the device outputs both Ch31 and Ch63 outputs on the first rising edge of the clock, Ch30 and Ch62 on the 2nd rising edge and so on. This mode is useful when two separate single channel ADCs or one simultaneous sampling ADC is used to digitize OUTP-OUTM<0> and OUTP-OUTM<1>. Unlike sequential mode, simultaneous mode needs only 33 clocks to read all 64 channels of data. In this case the output data transfer rate per output driver is the same as the clock frequency. The device can work at a maximum clock frequency of 3.75 MHz.

Running the Device at Minimum Scan Time:

Minimum scan time is achieved if a data read overlaps the reset phase (as shown in 图 1). This can be done if an IRST rising edge and STI rising edge occur simultaneously. It is recommended to stop the clock after the device receives 133 clocks after STI falling edge, if sequential mode selected (or 33 clocks if simultaneous mode is selected). It is possible to keep the clock free running throughout the scan, but it can potentially deteriorate noise performance. With t-scan (min) = t1+t2+132 (t-clk)+t3+t4+t5+0.5µSec+t6+t7 and all timing values used are the minimum specified values, then t-scan (min) = 28.32 µSec.

Running the Device at Higher Scan Time (for lesser frame rate):

It is possible to run the device at a higher scan time to achieve a lesser frame rate without affecting performance. (Note that violating the maximum limits on the specified timings and also the minimum specification on the clock frequency results in charge leakage on the integration or CDS capacitors. This causes additional offset and gain errors.)

ZHCS314 -SEPTEMBER 2009 www.ti.com.cn

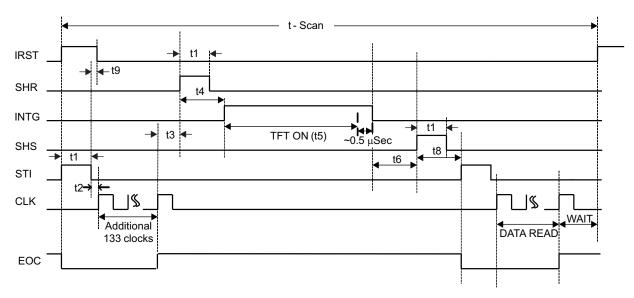


图 7. Device Operation at Higher Scan Times (sequential mode shown, however the same is possible for simultaneous mode)

As shown in 8 7, a data read can be started by issuing a STI pulse after SHS and well before IRST. In this case the device goes into a 'wait' state after the data read is complete. The device remains in this wait state until it receives IRST and STI rising edges. Note that the clock can be stopped (or kept running) in the wait state however it is necessary to provide an additional 133 or 33 clocks after IRST falling edge depending on seguential or simultaneous mode selection respectively. It is recommended to stop the clock after the device receives 133 or 33 clocks depending on mode selection until the next STI pulse. This helps to get maximum SNR from the device. However it is allowed to use a free running clock.

Cascading Two AFE0064 Devices to Scan 128 Channels:

It is possible to cascade two AFE0064 devices to scan 128 channels. This feature is useful for sequential mode and allows the use of a 4 channel, multiplexed input ADC for two AFEs.

In that case, STO of device 1 is connected to STI of device 2. Other control pins (INTG, IRTS, SHR, SHS, CLK) of both devices are connected to each other.

As shown in figure 8, STO falling edge is delayed by one clock from STI falling edge. (STO falling edge aligns with first clock falling edge.) Device 2 data out starts with the second clock rising edge (the first CLK rising edge after STI falling edge for device 2). Effectively, data from the four output drivers of the two devices is presented on every rising edge in the following sequence:

Clock 1,5,9...: OUT-1 of Device 1 Clock 2,6,10...: OUT-1 of Device 2 Clock 3,7,11...: OUT-0 of Device 1 Clock 4,8,12...: OUT-0 of Device 2

Note this output sequence when connecting a multiplexed input ADC at a device output.

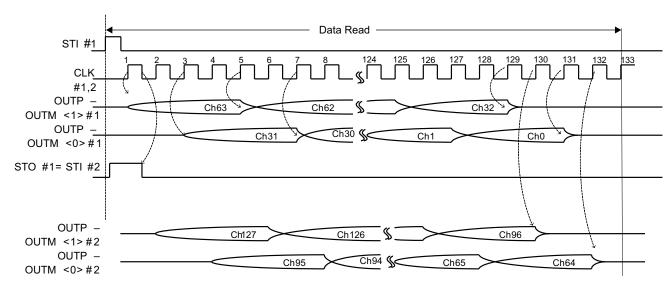


图 8. Data Read with Two Devices in Cascade

This mode allows the use of a single, four channel, 15 MHz (or more) ADC for digitizing the data from 128 channels in single scan. In this mode the effective maximum data transfer rate is 15 MHz.

TFT Charge Injection Compensation: The AFE0064 allows compensation for the charge injected by the TFT during turn on and turn off. During turn on, typically a TFT injects a positive charge forcing the integrator output below zero. One way to handle this is to allow negative swing on the integrator. In that case the pixel charge is integrated from the –ve value resulting from TFT charge injection. For this scheme the device output dynamic range covers all voltage levels starting from fixed –ve voltage arising from maximum anticipated charge injection to maximum positive voltage from the integrator. This can result in loss of dynamic range in the case where TFT charge injection is less than the maximum anticipated charge injection.

To overcome this problem, the AFE0064 provides a special feature to compensate for positive or negative charge during TFT turn on and opposite polarity charge during TFT turn off. The user can adjust the compensation charge with the help of external voltage on the VTEST-A and VTEST-B pins.

ZHCS314 -SEPTEMBER 2009 www.ti.com.cn

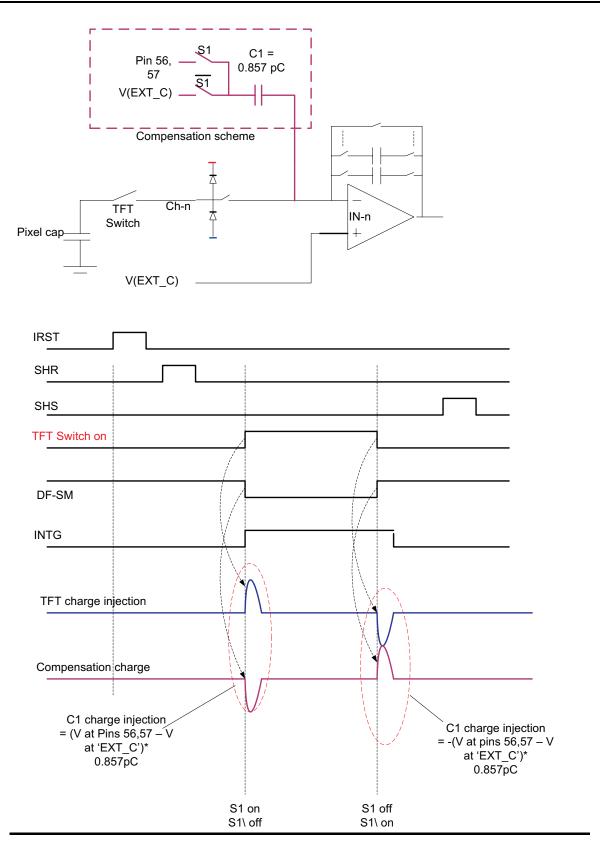


图 9. TFT Charge Injection Compensation Scheme

Compensation charge for TFT turn on = (V at pins $56,57 - V_EXT_C'$) × 0.857 pC Compensation charge for TFT turn off = -(V at pins $56,57 - V_EXT_C'$) × 0.857 pC

Select voltage at pins 56,57 higher than the voltage at 'EXT_C' for compensating -ve charge during TFT turn on.

The device always injects an equal and opposite compensation charge at the rising edge of the DF_SM signal.

Allowing Limited Hole Counting (+ve charge) for Applications with Electron Counting (-ve charge) and Vice a Versa:

The charge compensation scheme can be used to offset the integrator output at the start of integration so as to allow a linear charge range in both directions. As discussed previously (refer to 9), it is possible to inject a fixed +ve or –ve charge at the start of integration. The device can integrate up or down starting from this offset level. Note the integrator output is linear within the bounds of REFM and REFP. One can calculate the offset charge at integration start as Qcomp = (V at pins $56,57 - V_{EXT_C}$) × 0.857 pC.

The resulting integrator o/p offset voltage in the case of integration up or down is given by the following formula: In the case of integration up:

Vint_off = REFM – (Qcomp × Int FB cap) — Refer to 表 1 for the Int FB cap for the selected range. Qcomp is negative for integration up, so that the integration output has a positive offset allowing headroom for hole counting.

In the case of integration down:

Vint_off = REFP – (Qcomp × Int FB cap) — Refer to 表 1 for the Int FB cap for the selected range. Qcomp is positive for integration up, so that the integration output has a negative offset allowing headroom for electron counting.

As shown in \boxtimes 10, DF_SM rising edge is pushed after SHS rising edge. This avoids opposite charge injection which can corrupt integrator output.

www.ti.com.cn

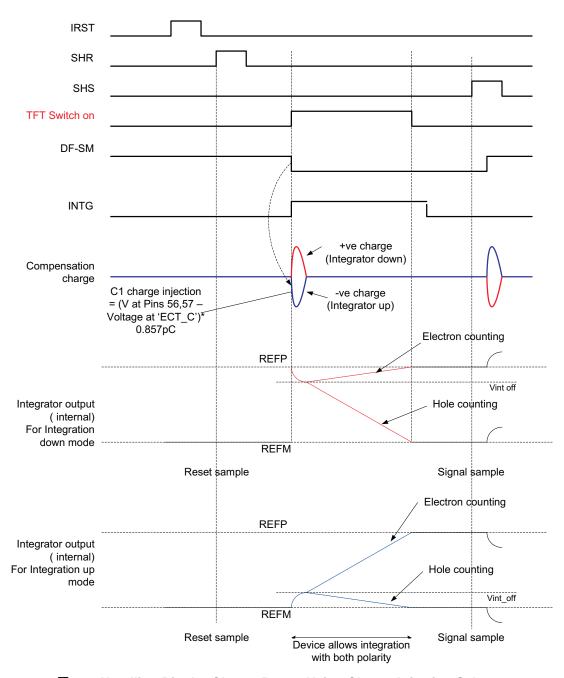
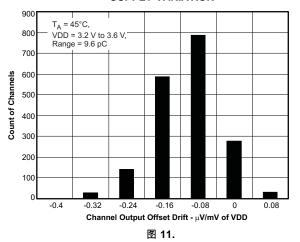
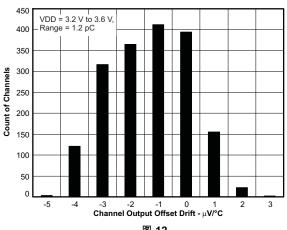
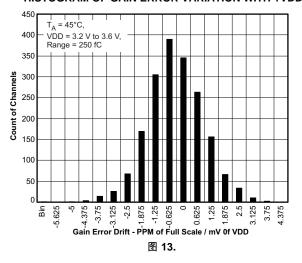



图 10. Handling Bipolar Charge Range Using Charge Injection Scheme


Note the relation between the integrator output and AFE0064 output (OUTP and OUTM) described in the Data Read section.

TYPICAL CHARACTERISTICS

HISTOGRAM OF OUTPUT OFFSET DRIFT WITH +VDD **SUPPLY VARIATION**



HISTOGRAM OF OUTPUT OFFSET DRIFT WITH FREE-AIR **TEMPERATURE**

图 12.

HISTOGRAM OF GAIN ERROR VARIATION WITH +VDD

HISTOGRAM OF GAIN ERROR DRIFT WITH FREE-AIR **TEMPERATURE**

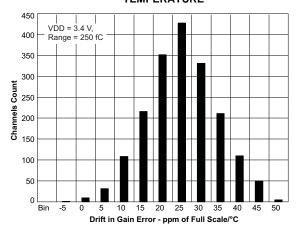
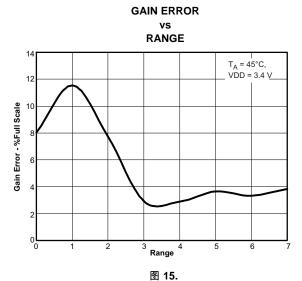



图 14.

0.02 0.01

-0.01

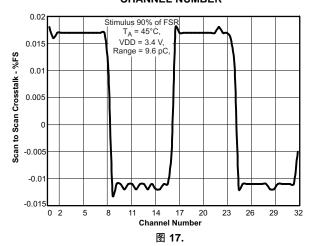
0.08 0.07 Stimulus 90% of FSR, T_A = 45°C, VDD = 3.4 V, Aggressor Channel: 20, Range: 9.6 pC Channel to Channel Crosstalk - %FS 0.06 0.05 0.04 0.03

CHANNEL TO CHANNEL CROSSTALK

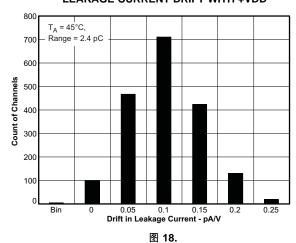
CHANNEL NUMBER

Channel Number 图 16.

40

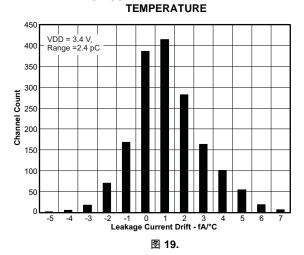

50

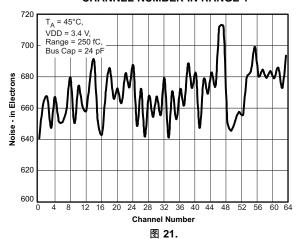
60


70

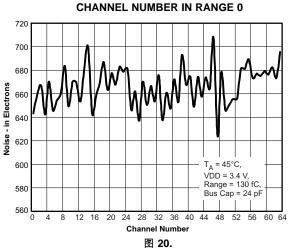
30

SCAN TO SCAN CROSSTALK ٧S **CHANNEL NUMBER**


COUNT OF CHANNELS vs **LEAKAGE CURRENT DRIFT WITH +VDD**



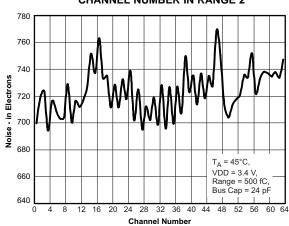
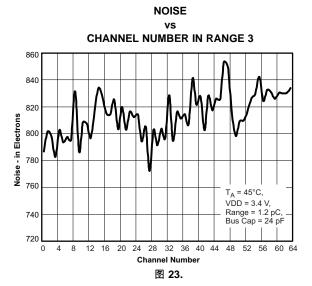
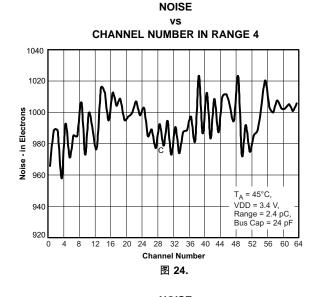
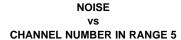
COUNT OF CHANNELS

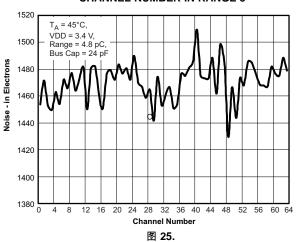

vs LEAKAGE CURRENT DRIFT WITH FREE-AIR

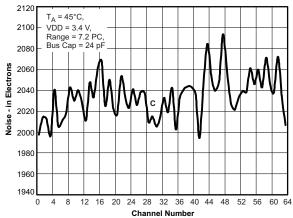
NOISE vs CHANNEL NUMBER IN RANGE 1

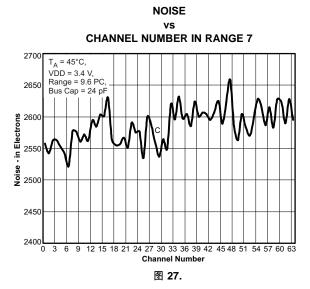
NOISE vs CHANNEL NUMBER IN RANGE 0

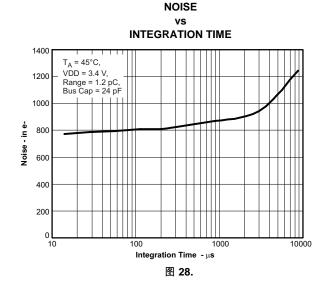
NOISE vs CHANNEL NUMBER IN RANGE 2

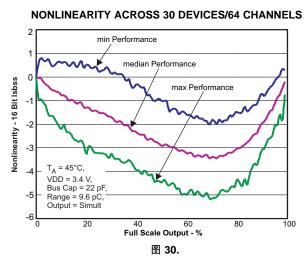

图 22.





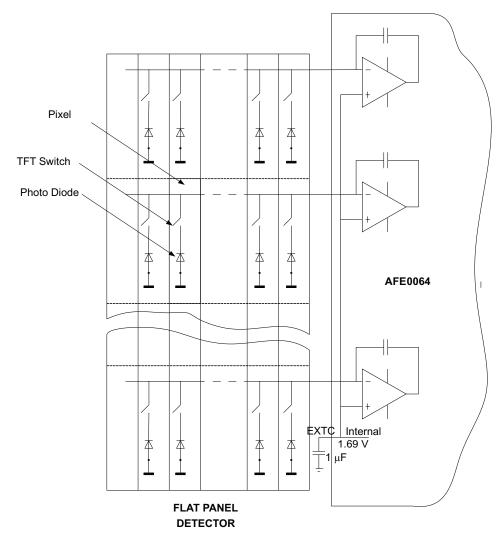


NOISE vs CHANNEL NUMBER IN RANGE 6





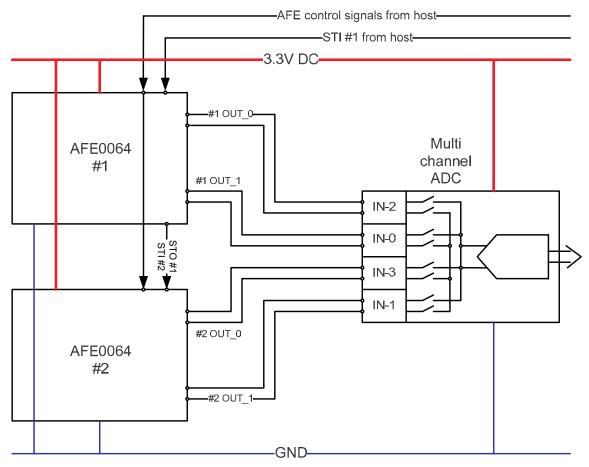
NONLINEARITY ACROSS 30 DEVICES/64 CHANNELS min Performance median Performance max Performance T_A = 45°C, VDD = 3.4 V, Bus Cap = 22 pF, Range = 1.2 pC, Output = Simult 20 40 Range - % 29.



APPLICATION INFORMATION

INTERFACING FLAT PANEL DETECTOR (FPD)

The following figure shows interfacing a flat panel detector to an AFE0064. The flat panel detector is a matrix of pixels. Each pixel consists of a photo diode and Thin Film Transistor switch. All of the pixels in a single row (or column depending on the convention used) are connected to a single bus. This bus interfaces with a single integrator. There is a separate integrator channel per row.

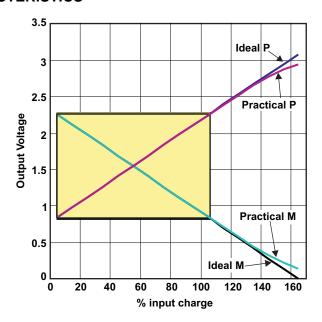

On X-Ray exposure (converted to light with scintillator) individual photo diodes acquire a charge proportional to incident light intensity. This charge is sampled in self capacitance of the photo diode. The columns are scanned one by one and the AFE0064 converts an individual photo diode charge into a proportional voltage.

ADC INTERFACE WITH AFE OUTPUT

Each AFE0064 has two differential output drivers as mentioned previously. AFE allows cascading of two devices which can work together like a single 128 channel device. Refer to ₹8 8 for the timing diagram.

Contact TI sales for suitable ADC.

图 32. Typical Schematic Showing Four Channel ADC Interface with Two AFEs


RESETTING THE FPD PANEL

It is possible to reset the photo diodes using IRST. The integrator acts like a unity gain buffer during reset and the device can source or sink 50 μ A through each of the 64 input pins while in the reset phase. For example, to reset a 10 pC charge it requires 10pC/50 μ A = 1/5 μ Sec.

Refer to \boxtimes 3 for the reset timing details. The device is in the reset phase for 32/8 clocks after IRST rising edge in sequential/simultaneous mode respectively. The reset duration is controlled by selecting a clock speed or holding one of the 32/8 clocks for the required time in sequential/simultaneous mode respectively.

AFE TRANSFER CHARACTERISTICS

The plot above shows AFE transfer characteristics in integrator down mode. (For integrator up mode the P and M plots are interchanged.) AFE output is linear in the charge range bound by the rectangle shown.

The four corners of the rectangle in clockwise direction, starting with bottom left corner are as follows: (0%, 0.85 V), (0%, 2.25 V), (100%, 2.25 V), (100%, 0.85 V) where REFP = 2.25 V and REFM = 0.85 V.

Beyond this range, the AFE output still responds to input charge however linearity is not specified. Linearity deteriorates as the output reaches close to the rails.

One can detect overrange once the output is beyond the linear rectangle and select a higher AFE range. It is also recommended to clamp the ADC input once it crosses 100% FS.

AFE REFERENCE DRIVING

 \boxtimes 33 shows generation of the 0.85 V and 2.25 V references for an AFE. Note that the device uses internal buffers on the reference inputs. As a result, it is possible to share a reference to multiple AFEs in a system. However, it is recommended to use a separate 100- Ω , 1- μ F LPF for each individual AFE. Use 1% tolerance resistors for dividing 2.5 V to 2.25 V and 0.85 V.

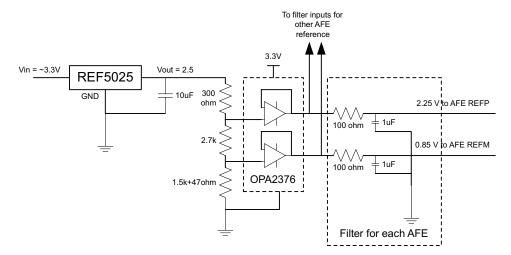


图 33. Typical Reference Generation and Driving Circuit for the AFE0064

www.ti.com 31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
AFE0064IPBK	Active	Production	LQFP (PBK) 128	90 JEDEC TRAY (5+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064
AFE0064IPBK.A	Active	Production	LQFP (PBK) 128	90 JEDEC TRAY (5+1)	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064
AFE0064IPBKR	Active	Production	LQFP (PBK) 128	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064
AFE0064IPBKR.A	Active	Production	LQFP (PBK) 128	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064

⁽¹⁾ Status: For more details on status, see our product life cycle.

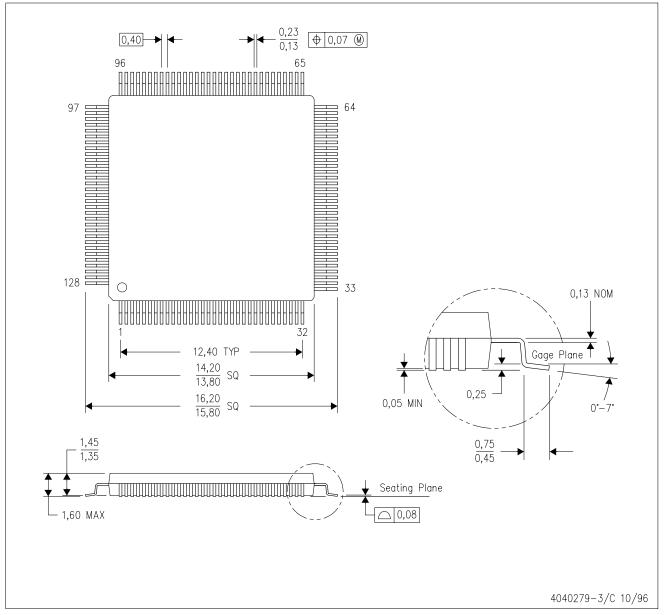
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

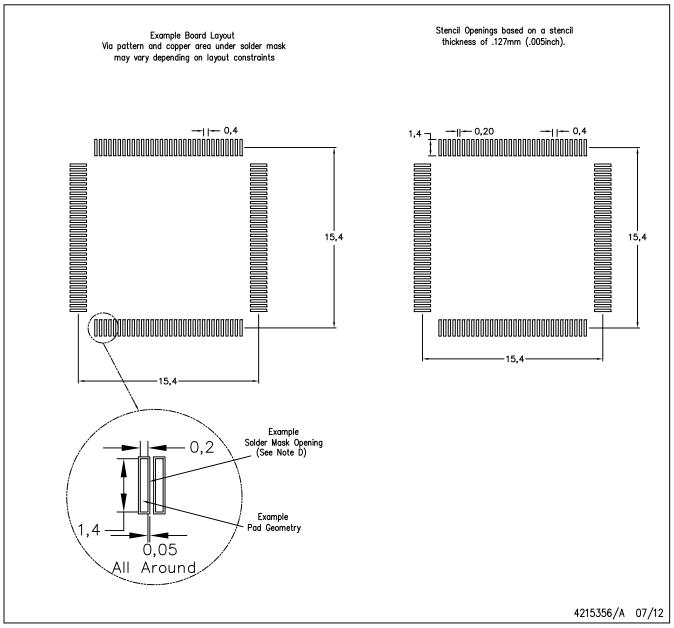

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PBK (S-PQFP-G128)

PLASTIC QUAD FLATPACK


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026

PBK (S-PQFP-G128)

PLASTIC QUAD FLAT PACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月