

ADC3664 ZHCSMZ6B - DECEMBER 2020 - REVISED JULY 2022

ADC3664 14 位、125MSPS、低噪声、低功率双通道 ADC

1 特性

• 14 位 125MSPS ADC

本底噪声:-156.9dBFS/Hz

• 低功耗: 100mW/ch • 延迟:2个时钟周期

• 电压基准:

- 外部:65MSPS 至 125MSPS - 内部: 100MSPS 至 125MSPS

• 保证 14 位. 无丢码

输入带宽: 1.4GHz (3dB)

INL: ±2.6LSB; DNL: ±0.9LSB

• 工业温度范围: -40°C 至 +105°C

片上数字滤波器(可选)

- 2 倍、4 倍、8 倍、16 倍、32 倍抽取率

- 32 位 NCO

• 串行 LVDS 数字接口(2线、1线和1/2线)

• 小尺寸: 40 引脚 VQFN (5mm × 5mm) 封装

• 频谱性能 (f_{IN} = 5MHz):

- SNR: 77.5dBFS

- SFDR: 84dBc HD2 \ HD3 - SFDR: 92dBFS 最严重毛刺

频谱性能 (f_{IN} = 70MHz):

- SNR: 75.5dBFS

 SFDR: 76dBc HD2、HD3 - SFDR:84dBFS 最严重毛刺

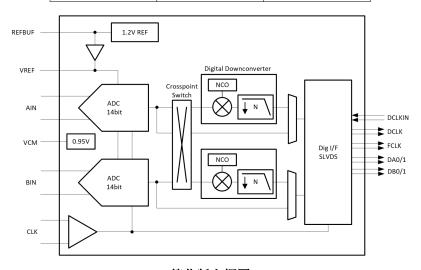
2 应用

- 高速数据采集
- 软件定义无线电
- 通信基础设施
- 频谱分析仪
- OTDR
- 控制环路
- 源测量单元 (SMU)
- 仪表
- 光谱分析
- 雷达

3 说明

ADC3664 器件是一款低噪声、超低功耗、14 位、 125MSPS 高速双通道 ADC。该器件可实现超低噪声 性能和 -156.9dBFS/Hz 的噪声频谱密度,还具有出色 的线性度和动态范围。ADC3664 可提供中频采样支 持,使器件适合各种应用。高速控制环路受益于低至一 个时钟周期的低延迟。该 ADC 在 125MSPS 下的功耗 仅为每通道 100mW, 其功耗随采样率减小而迅速降

ADC3664 使用串行 LVDS (SLVDS) 接口输出数据,可 更大限度减少数字互连的次数。该器件提供双通道、单 通道和半通道选项。ADC3664 与 16 位分辨率 ADC 系 列实现了引脚对引脚兼容。该器件支持 - 40℃ 至 +105℃ 的工业级工作温度范围。


封装信息

器件型号	封装 ⁽¹⁾	封装尺寸(标称值)		
ADC3664	VQFN (40)	5.00 × 5.00mm		

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附

表 3-1. 器件比较

	**	
器件型号	分辨率	采样率
ADC3661	16 位	10MSPS
ADC3662	16 位	25MSPS
ADC3663	16 位	65MSPS
ADC3664	14 位	125MSPS

简化版方框图

Table of Contents

1 特性	8.2 Functional Block Diagram	20
2 应用	8.3 Feature Description	
3 说明1	8.4 Device Functional Modes	
4 Revision History	8.5 Programming	42
5 Pin Configuration and Functions3	8.6 Register Maps	44
6 Specifications5	9 Application Information Disclaimer	58
6.1 Absolute Maximum Ratings5	9.1 Typical Application	58
6.2 ESD Ratings5	9.2 Initialization Set Up	61
6.3 Recommended Operating Conditions5	9.3 Power Supply Recommendations	62
6.4 Thermal Information	9.4 Layout	63
6.5 Electrical Characteristics - Power Consumption6	10 Device and Documentation Support	65
6.6 Electrical Characteristics - DC Specifications	10.1 接收文档更新通知	65
6.7 Electrical Characteristics - AC Specifications9	10.2 支持资源	
6.8 Timing Requirements	10.3 Trademarks	
6.9 Typical Characteristics	10.4 Electrostatic Discharge Caution	65
7 Parameter Measurement Information	10.5 术语表	
8 Detailed Description20	11 Mechanical, Packaging, and Orderable	
8.1 Overview	Information	65

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision A (August 2021) to Revision B (July 2022)	Page
•	Changed the output clock jitter unit from ps to ps pk-pk in the Timing Requirements	10
•	Added GND symbol to REFGND pin for all voltage reference option diagrams	25
•	Added the section Output Bit Mapper	37
	Added default power up configuration summary	
•	Updated power-up initialization diagram with correct indexing	61
С	hanges from Revision * (December 2020) to Revision A (August 2021)	Page
•	All wake up time values moved from MAX to NOM	10

5 Pin Configuration and Functions

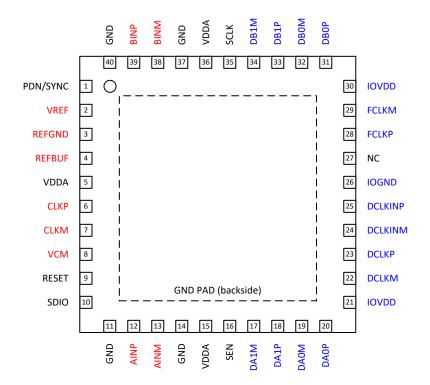


图 5-1. RSB (WQFN) Package, 40-Pin (Top View)

表 5-1. Pin Descriptions

F	PIN	I/O	DESCRIPTION		
NAME NO.		_	DESCRIPTION		
INPUT/REFER	RENCE				
AINM	13	I	Negative analog input, channel A		
AINP	12	1	Positive analog input, channel A		
BINP	39	1	Positive analog input, channel B		
BINM	38	I	Negative analog input, channel B		
REFBUF	4	ı	1.2 V external voltage reference input for use with internal reference buffer. Internal 100 k S pull-up resistor to AVDD. This pin is also used to configure default operating conditions.		
REFGND	3	I	Reference ground input, 0 V		
VCM	8	0	Common-mode voltage output for the analog inputs, 0.95V		
VREF	2	I	External voltage reference input		
CLOCK					
CLKM	7	1	Negative differential sampling clock input for the ADC		
CLKP	6	1	Positive differential sampling clock input for the ADC		
CONFIGURAT	TION				
PDN/SYNC 1 I		I	Power down/Synchronization input. This pin can be configured via the SPI interface. Active high. This pin has an internal 21 k Ω pull-down resistor.		

表 5-1. Pin Descriptions (continued)

ı	PIN	I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
RESET	9	I	Hardware reset. Active high. This pin has an internal 21 k Ω pull-down resistor.	
SCLK	35	I	Serial interface clock input. This pin has an internal 21 k Ω pull-down resistor.	
SDIO	10	I	Serial interface data input and output. This pin has an internal 21 k Ω pull-down resistor.	
SEN	16	I	Serial interface enable. Active low. This pin has an internal 21 k Ω pull-up resistor to AVDD.	
NC	27	-	Do not connect	
DIGITAL INTE	ERFACE			
DA0P	20	0	Positive differential serial LVDS output for lane 0, channel A.	
DA0M	19	0	Negative differential serial LVDS output for lane 0, channel A.	
DA1P	18	0	Positive differential serial LVDS output for lane 1, channel A.	
DA1M	17	0	Negative differential serial LVDS output for lane 1, channel A.	
DB0P	31	0	Positive differential serial LVDS output for lane 0, channel B.	
DB0M	32	0	Negative differential serial LVDS output for lane 0, channel B.	
DB1P	33	0	Positive differential serial LVDS output for lane 1, channel B.	
DB1M	34	0	Negative differential serial LVDS output for lane 1, channel B.	
DCLKP	23	0	Positive differential serial LVDS bit clock output.	
DCLKM	22	0	Negative differential serial LVDS bit clock output.	
FCLKP	28	0	Positive differential serial LVDS frame clock output.	
FCLKM	29	0	Negative differential serial LVDS frame clock output.	
DCLKINP	25	I	Positive differential serial LVDS bit clock input. Internal 100 Ω differential termination.	
DCLKINM	24	I	Negative differential serial LVDS bit clock input. Internal 100 $^{\Omega}$ differential termination.	
POWER SUP	PLY			
AVDD	5,15,36	I	Analog 1.8-V power supply	
GND	11,14,37,40, PowerPAD	I	Ground, 0 V	
IOGND	26	I	Ground, 0 V for digital interface	
IOVDD	21,30	I	1.8-V power supply for digital interface	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Supply voltage range, AVDD, IOVDD		- 0.3	2.1	V
Supply voltage rang	Supply voltage range, GND, IOGND, REFGND		0.3	V
Voltage applied to	AINP/M, BINP/M, CLKP/M, DCLKINP/M, VREF, REFBUF	- 0.3	2.1	V
input pins	PDN/SYNC, RESET, SCLK, SEN, SDIO	- 0.3	2.1	
Junction temperatu	unction temperature, T _J		105	°C
Storage temperatur	torage temperature, T _{stg}		150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2500	
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply	AVDD ⁽¹⁾	1.75	1.8	1.85	V
voltage range	IOVDD ⁽¹⁾	1.75	1.8	1.85	V
T _A	Operating free-air temperature	- 40		105	°C
TJ	Operating junction temperature			105 ⁽²⁾	°C

- Measured to GND.
- (2) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

		ADC3664	
	THERMAL METRIC ⁽¹⁾	RSB (QFN)	UNIT
		40 Pins	
R⊕JA	Junction-to-ambient thermal resistance	30.7	°C/W
R _⊕ JC(top)	Junction-to-case (top) thermal resistance	16.4	°C/W
R⊕JB	Junction-to-board thermal resistance	10.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	10.5	°C/W
R _{⊕ JC(bot)}	Junction-to-case (bottom) thermal resistance	2.0	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics - Power Consumption

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6V reference, and -1-dBFS differential input, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC3664:	125 MSPS					
I _{AVDD}	Analog supply current	External reference		64	80	mA
I _{IOVDD}	I/O supply current	SLVDS 2-wire		47	72	MA
P _{DIS}	Power dissipation	External reference, 2-wire		200	274	mW
		2-wire, 1/2-swing		35		
		4x real decimation, 16-bit, 1-wire		50		
		16x real decimation, 16-bit, 1-wire		45		
		16x real decimation, 16-bit, 1/2-wire		41		
	I/O supply current	4x complex decimation, 16-bit, 1-wire		57		mA
I _{IOVDD}		8x complex decimation, 16-bit, 1-wire		54		
		8x complex decimation, 16-bit, 1/2-wire		50		
		16x complex decimation, 16-bit, 1-wire		50		
		16x complex decimation, 16-bit, 1/2-wire		47		
		32x complex decimation, 16-bit, 1-wire		48		
		32x complex decimation, 16-bit, 1/2-wire		43		
MISCELLA	NOUS					
	Internal reference, additional analog supply current			4		
I _{AVDD}	External 1.2V reference (REFBUF), additional analog supply current	Enabled via SPI		0.5		mA
	Single ended clock input, reduces analog supply current by			1		
P _{DIS}	Power consumption in global power down mode	Default mask settings		12		mW

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6.6 Electrical Characteristics - DC Specifications

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and -1-dBFS differential input, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC ACCUR	ACY					
No missing o	codes		14			bits
PSRR		F _{IN} = 1 MHz		35		dB
DNL	Differential nonlinearity	F _{IN} = 5 MHz	-0.97	± 0.9	0.97	LSB
INL	Integral nonlinearity	F _{IN} = 5 MHz	-7.5	± 2.6	7.5	LSB
V _{OS_ERR}	Offset error		-55	± 30	55	LSB
V _{OS_DRIFT}	Offset drift over temperature			± 0.06		LSB/°C
GAIN _{ERR}	Gain error	External 1.6V Reference		± 2		%FSR
GAIN _{DRIFT}	Gain drift over temperature	External 1.6V Reference		± 57		ppm/°C
GAIN _{ERR}	Gain error	Internal Reference		± 3		%FSR
GAIN _{DRIFT}	Gain drift over temperature	Internal Reference		106		ppm/°C
Transition No	oise			0.7		LSB
ADC ANALO	OG INPUT (AINP/M, BINP/M)					
FS	Input full scale	Differential		3.2		Vpp
V _{CM}	Input common model voltage		0.9	0.95	1.0	V
R _{IN}	Input resistance	Differential at DC		8		kΩ
C _{IN}	Input Capacitance	Differential at DC		5.4		pF
V _{OCM}	Output common mode voltage			0.95		V
BW	Analog Input Bandwidth (-3dB)			1.4		GHz
Internal Vol	tage Reference					
V_{REF}	Internal reference voltage			1.6		V
V _{REF} Output	Impedance			8		Ω
Reference I	nput Buffer (REFBUF)					
External refe	erence voltage			1.2		V
External vo	tage reference (VREF)					
V_{REF}	External voltage reference			1.6		V
Input Curren	t			1		mA
Input impeda	ance			5.3		kΩ
Clock Input	(CLKP/M)		<u>'</u>			
Innut alask fr	ro guanou	External reference	0.5		125	MHz
Input clock fi	equency	Internal reference	100		125	MHz
V _{ID}	Differential input voltage			1	3.6	Vpp
V _{CM} Input common mode voltage				0.9		V
R _{IN}	Single ended input resistance to co	mmon mode		5		kΩ
C _{IN}	Single ended input capacitance			1.5		pF
Clock duty c	ycle		45	50	60	%

6.6 Electrical Characteristics - DC Specifications (continued)

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and -1-dBFS differential input, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital In	puts (RESET, PDN, SCLK, SEN, SDIO)				•	
V _{IH}	High level input voltage		1.4			V
V _{IL}	Low level input voltage				0.4	V
I _{IH}	High level input current			90	150	uA
I _{IL}	Low level input current		-150	-90		uA
Cı	Input capacitance			1.5		pF
Digital O	utput (SDOUT)					
V _{OH}	High level output voltage	I _{LOAD} = -400 uA	IOVDD - 0.1	IOVDD		V
V _{OL}	Low level output voltage	I _{LOAD} = 400 uA			0.1	
SLVDS In	terface					
V _{ID}	Differential input voltage	DCLKIN	200	350	650	mVpp
V _{CM}	Input common mode voltage	DCLKIN	1	1.2	1.3	V
Output data rate		per differential SLVDS output			1	Gbps
V _{OD}	Differential output voltage		500	700	850	mVpp
V _{CM}	Output common mode voltage			1.0		V

6.7 Electrical Characteristics - AC Specifications

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and -1-dBFS differential input, unless otherwise noted

- 1-dBFS differential input, unless otherwise note PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
NSD	Noise Spectral Density	f _{IN} = 5 MHz, A _{IN} = -20 dBFS		-156.9		dBFS/Hz	
		f _{IN} = 5 MHz	72	77.5		dBFS	
		f _{IN} = 5 MHz, A _{IN} = -20 dBFS		78.9			
OND	Oliver all the species a species	f _{IN} = 10 MHz		77.6		dBFS	
SNR	Signal to noise ratio	f _{IN} = 40 MHz		76.9			
		f _{IN} = 70 MHz		75.5			
		f _{IN} = 100 MHz		74.1			
		f _{IN} = 5 MHz		75.7			
		f _{IN} = 10 MHz		74.2			
SINAD	Signal to noise and distortion ratio	f _{IN} = 40 MHz		72.6		dBFS	
		f _{IN} = 70 MHz		71.3			
		f _{IN} = 100 MHz		72.4			
		f _{IN} = 5 MHz		12.6			
		f _{IN} = 10 MHz		12.6			
ENOB	Effective number of bits	f _{IN} = 40 MHz		12.5		bit	
		f _{IN} = 70 MHz		12.3			
		f _{IN} = 100 MHz		12.0			
	Total Harmonic Distortion (First five harmonics)	f _{IN} = 5 MHz	71.5	80			
		f _{IN} = 10 MHz		76			
ГНД		f _{IN} = 40 MHz		74		dBc	
		f _{IN} = 70 MHz		72			
		f _{IN} = 100 MHz		76			
		f _{IN} = 5 MHz	77	84			
		f _{IN} = 10 MHz		78			
HD2	Second Harmonic Distortion	f _{IN} = 40 MHz		75		dBc	
		f _{IN} = 70 MHz		77			
		f _{IN} = 100 MHz		79			
		f _{IN} = 5 MHz	73.5	84			
		f _{IN} = 10 MHz		81			
HD3	Third Harmonic Distortion	f _{IN} = 40 MHz		88		dBc	
		f _{IN} = 70 MHz		76			
		f _{IN} = 100 MHz		81			
		f _{IN} = 5 MHz	84	92			
		f _{IN} = 10 MHz		93			
Non HD2,3	Spur free dynamic range (excluding	f _{IN} = 40 MHz		89		dBFS	
	HD2 and HD3)	f _{IN} = 70 MHz		84			
		f _{IN} = 100 MHz		86			
IMD3	Two tone inter-modulation distortion	f ₁ = 10 MHz, f ₂ = 12 MHz, A _{IN} = -7 dBFS/tone		88		dBc	

6.8 Timing Requirements

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and -1-dBFS differential input, unless otherwise noted

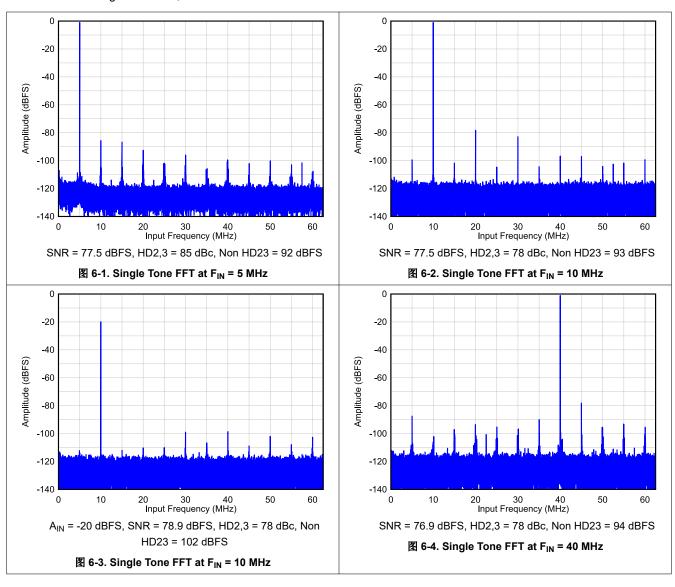
PARAMETER		TEST CONDITIONS	MIN NOM I	MAX	UNIT	
ADC Timi	ng Specifications					
t _{AD}	Aperture Delay		0.85		ns	
t _A	Aperture Jitter	square wave clock with fast edges	250		fs	
t _J	Jitter on DCLKIN			± 50	ps pk-pk	
Recory tin	ne from +6 dB overload condition	SNR within 1 dB of expected value	1		Clock cycle	
t _{ACQ}	Signal acquisition period	referenced to sampling clock falling edge	-T _S /4		Sampling clock period	
t _{CONV}	Signal conversion period		6		ns	
		Bandgap reference enabled, single ended clock	13		us	
	Time to valid data after coming out of	Bandgap reference enabled, differential clock	15		us	
	power down. Internal reference.	Bandgap reference disabled, single ended clock	2.4	2.4		
Wake up		Bandgap reference disabled, differential clock	2.3		ms	
time		Bandgap reference enabled, single ended clock	13		us	
	Time to valid data after coming out of power down. External 1.6V reference.	Bandgap reference enabled, differential clock	14			
		Bandgap reference disabled, single ended clock	2.0			
		Bandgap reference disabled, differential clock	2.2		ms	
t _{S,SYNC}	Setup time for SYNC input signal	Deferenced to compling clock vising adds	500			
t _{H,SYNC}	Hold time for SYNC input signal	Referenced to sampling clock rising edge	600		ps	
		1/2-wire SLVDS	1		Clock	
ADC Latency	Signal input to data output	1-wire SLVDS	1	1		
Laterioy		2-wire SLVDS	2		cycles	
	Real decimation by 2		21			
Add.	Complex decimation by 2		22		Output clock	
Latency	Real or complex decimation by 4, 8, 16, 32	23		cycles		
Interface	Timing: Serial LVDS Interface					
t₽D	Propagation delay: sampling clock falling edge to DCLK rising edge	Delay between sampling clock falling edge to DCLKIN falling edge < 2.5ns. T _{DCLK} = DCLK period t _{CDCLK} = Sampling clock falling edge to DCLKIN falling edge	2+ 3+ 4+ TDCLK TDCLK TDCLK + + + tCDCLK tCDCLK tCDCLK			
		Delay between sampling clock falling edge to DCLKIN falling edge >= 2.5ns. T _{DCLK} = DCLK period t _{CDCLK} = Sampling clock falling edge to DCLKIN falling edge	2+ 3+ t _{CDCLK} t _{CDCLK} t _C	4 +	ns	

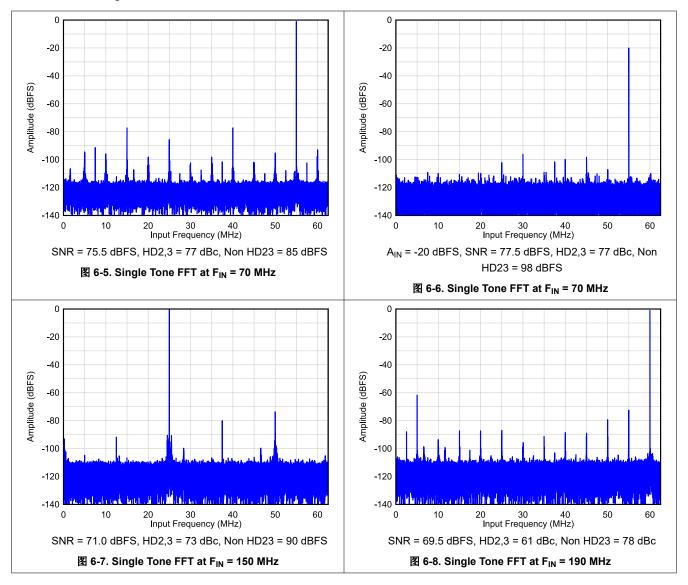
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

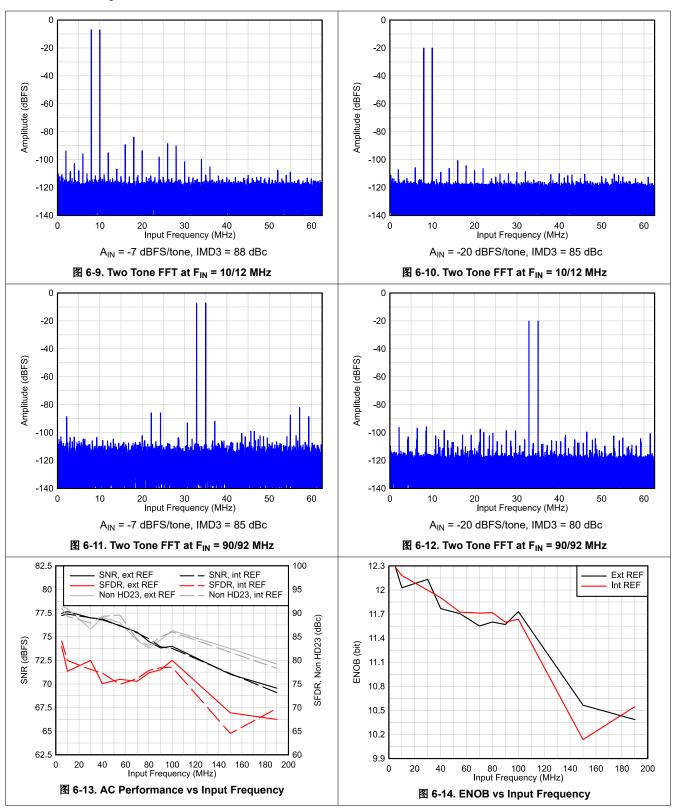
6.8 Timing Requirements (continued)

Typical values are over the operating free-air temperature range, at T_A = 25°C, full temperature range is T_{MIN} = -40°C to T_{MAX} = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and -1-dBFS differential input, unless otherwise noted

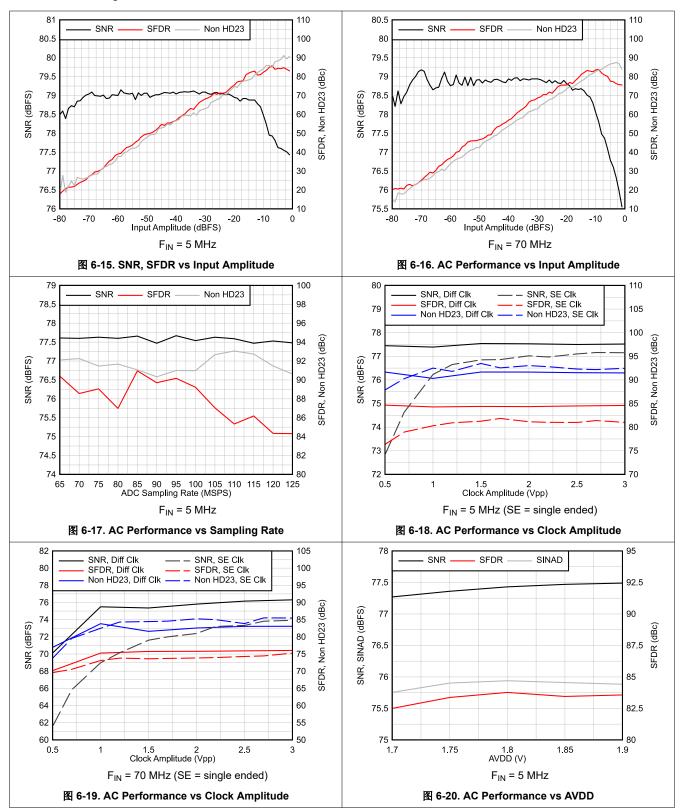

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT		
	DCLK rising edge to output data	Fout = 65 MSPS, DA/B0,1 = 455 MBPS	0	0.1				
	delay,	Fout = 80 MSPS, DA/B0,1 = 560 MBPS	0	0.1				
	2-wire SLVDS, 14-bit	Fout = 125 MSPS, DA/B0,1 = 875 MBPS	-0.2	0.1				
	DCLK rising edge to output data delay, 1-wire SLVDS, 14-bit	Fout = 65 MSPS, DA/B0 = 910 MBPS	0	0.1				
t _{CD}	DCLK rising edge to output data	Fout = 10 MSPS, DA/B0 = 160 MBPS	0	0.1		ns		
	delay,	Fout = 25 MSPS, DA/B0 = 400 MBPS	0	0.1				
	1-wire SLVDS, 16-bit	Fout = 62.5 MSPS, DA/B0= 1000 MBPS	-0.6	0.1				
	DCLK rising edge to output data	Fout = 5 MSPS, DA0 = 160 MBPS	0	0.1				
	delay,	Fout = 10 MSPS, DA0 = 320 MBPS	0	0.1				
	1/2-wire SLVDS, 16-bit	Fout = 25 MSPS, DA0 = 800 MBPS	0	0.1				
		Fout = 65 MSPS, DA/B0,1 = 455 MBPS	1.8	1.9				
	Data valid, 2-wire SLVDS, 14-bit	Fout = 80 MSPS, DA/B0,1 = 560 MBPS	1.4	1.5				
		Fout = 125 MSPS, DA/B0,1 = 875 MBPS	0.6	8.0				
	Data valid, 1-wire SLVDS, 14-bit	Fout = 65 MSPS, DA/B0 = 910 MBPS	0.6	0.8				
	Data valid, 1-wire SLVDS, 16-bit	Fout = 10 MSPS, DA/B0 = 160 MBPS	5.7	5.8		ns		
t _{DV}		Fout = 25 MSPS, DA/B0 = 400 MBPS	2.0	2.1				
		Fout = 62.5 MSPS, DA/B0= 1000 MBPS	0.5	0.6				
	Data valid, 1/2-wire SLVDS, 16-bit	Fout = 5 MSPS, DA0 = 160 MBPS	5.7	5.8				
		Fout = 10 MSPS, DA0 = 320 MBPS	2.7	2.8				
		Fout = 25 MSPS, DA0 = 800 MBPS	0.8	0.9				
SERIAL	PROGRAMMING INTERFACE (SCLK,	SEN, SDIO) - Input						
f _{CLK,SCLK}	Serial clock frequency				20	MHz		
t _{S,SEN}	SEN falling edge to SCLK rising edge	9	10					
t _{H,SEN}	SCLK rising edge to SEN rising edge		9			-		
t _{S,SDIO}	SDIO setup time from rising edge of	SCLK	17			ns		
t _{H,SDIO}	SDIO hold time from rising edge of S	CLK	9					
SERIAL	PROGRAMMING INTERFACE (SDIO)	- Output						
t _{OZD}	Delay from falling edge of 16th SCLk tri-state to valid data	3.9		10.8				
t _{ODZ}	Delay from SEN rising edge for SDIC	transition from valid data to tri-state	3.4		14	ns		
t _{OD}	Delay from falling edge of 16th SCLk	cycle during read operation to SDIO valid	3.9		10.8			

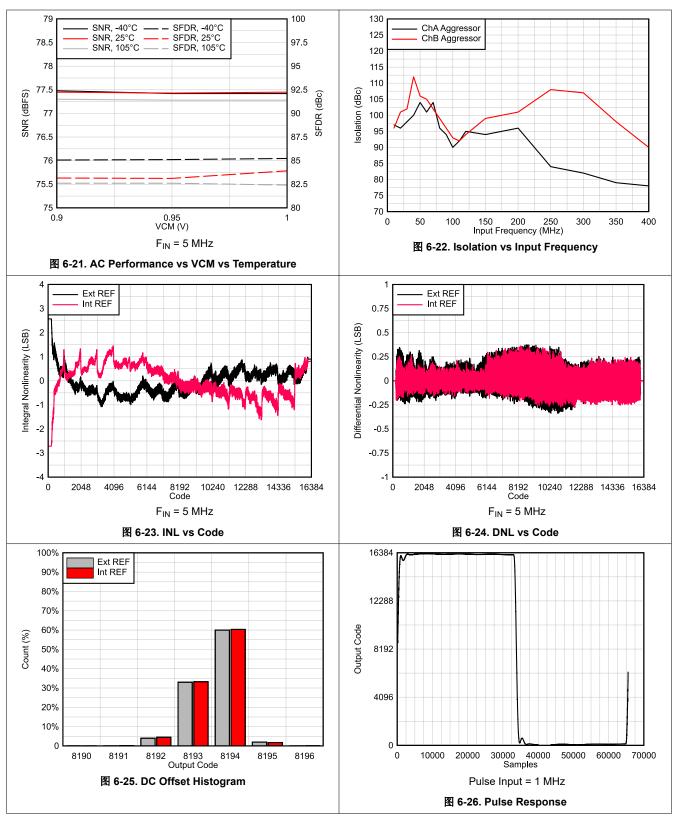

Copyright © 2022 Texas Instruments Incorporated

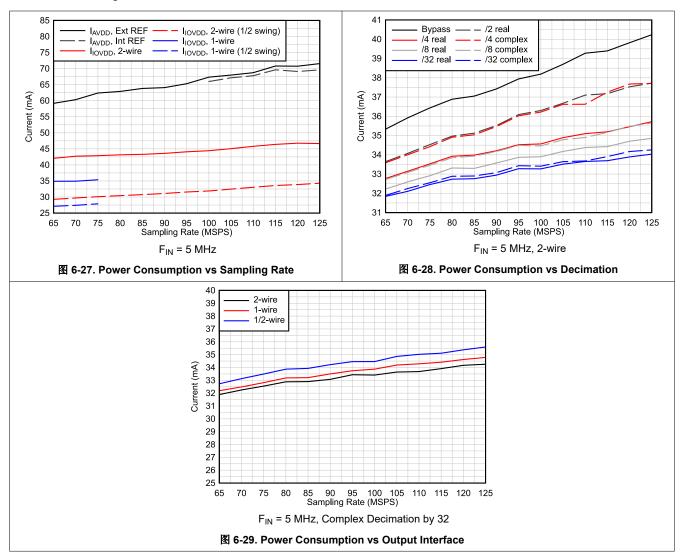
Submit Document Feedback



6.9 Typical Characteristics







7 Parameter Measurement Information

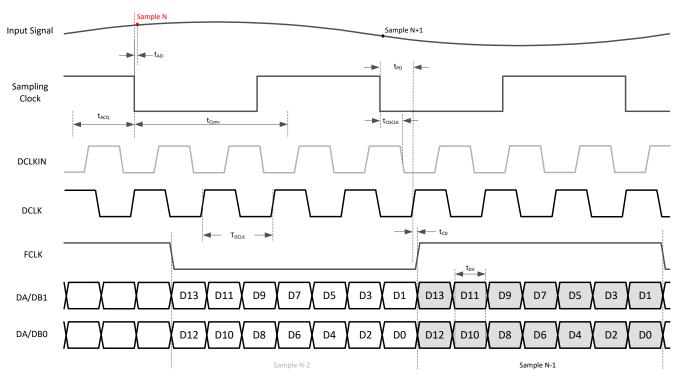


图 7-1. Timing diagram: 2-wire SLVDS

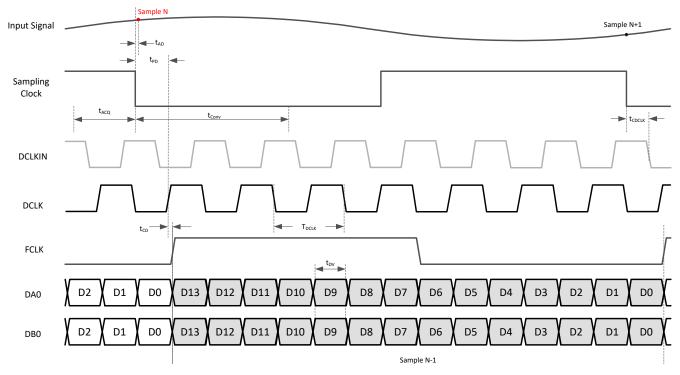


图 7-2. Timing diagram: 1-wire SLVDS

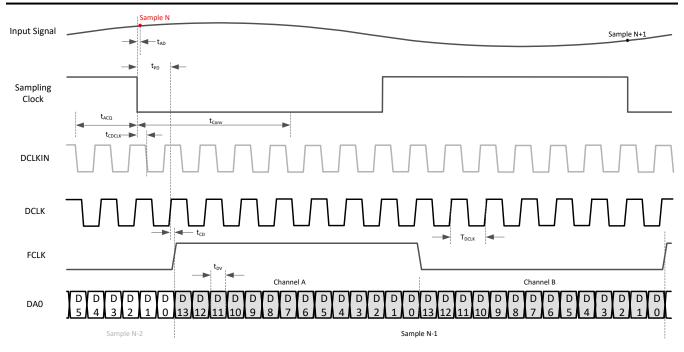


图 7-3. Timing diagram: 1/2-wire SLVDS

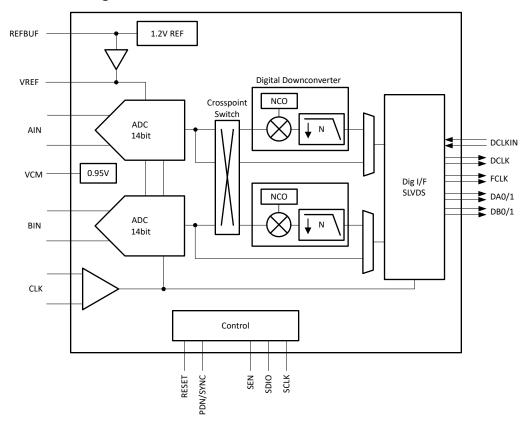
8 Detailed Description

8.1 Overview

The ADC3664 is a low noise, ultra-low power 14-bit high-speed dual channel ADC supporting sampling rates up to 125 MSPS. It offers very good DC precision together with IF sampling support which makes it ideally suited for a wide range of applications. The ADC3664 is equipped with an on-chip internal reference option but it also supports the use of an external, high precision 1.6V voltage reference or an external 1.2V reference which is buffered and gained up internally. Because of the inherent low latency architecture, the digital output result is available after as low as one clock cycle on the digital output interface.

备注

The ADC3664 supports the following sampling rates:


External Reference: 65 to 125 MSPS
 Internal Reference: 100 to 125 MSPS

An optional programmable digital down converter enables external anti-alias filter relaxation as well as output data rate reduction. The digital filter provides a 32-bit programmable NCO and supports both real or complex decimation.

The ADC3664 uses a serial LVDS (SLVDS) interface to output the data which minimizes the number of digital interconnects. The device supports a two-lane (2-wire), a one-lane (1-wire) and a half-lane (1/2-wire) option. The ADC3664 includes a digital output formatter which supports output resolutions from 14 to 20-bit.

The device features and control options can be set up either through pin configurations or via SPI register writes.

8.2 Functional Block Diagram

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Analog Input

The analog inputs of ADC3664 are intended to be driven differentially. Both AC coupling and DC coupling of the analog inputs is supported. The analog inputs are designed for an input common mode voltage of 0.95 V which must be provided externally on each input pin. DC-coupled input signals must have a common mode voltage that meets the device input common mode voltage range.

The equivalent input network diagram is shown in 88-1. All four sampling switches, on-resistance shown in red are in same position (open or closed) simultaneously.

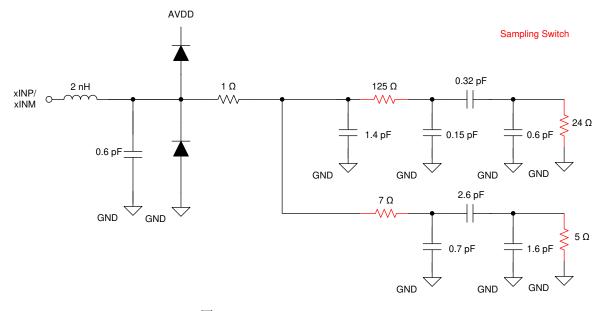
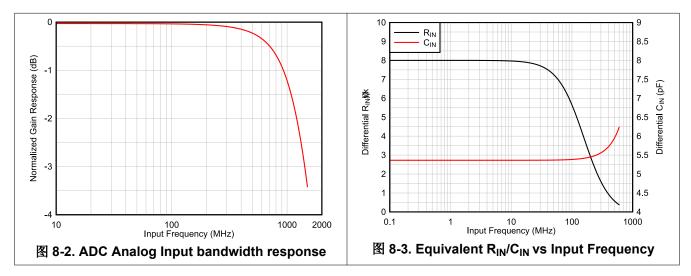



图 8-1. Equivalent Input Network

8.3.1.1 Analog Input Bandwidth

 \boxtimes 8-2 shows the analog full power input bandwidth of the ADC3664 with a 50 Ω differential termination. The -3 dB bandwidth is approximately 1.4 GHz and the useful input bandwidth with good AC performance is approximately 200 MHz.

The equivalent differential input resistance R_{IN} and input capacitance C_{IN} vs frequency are shown in $\boxed{8}$ 8-3.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

8.3.1.2 Analog Front End Design

The ADC3664 is an unbuffered ADC and thus a passive kick-back filter is recommended to absorb the glitch from the sampling operation. Depending on if the input is driven by a balun or a differential amplifier with low output impedance, a termination network may be needed. Additionally a passive DC bias circuit is needed in AC-coupled applications which can be combined with the termination network.

8.3.1.2.1 Sampling Glitch Filter Design

The front end sampling glitch filter is designed to optimize the SNR and HD3 performance of the ADC. The filter performance is dependent on input frequency and therefore the following filter designs are recommended for different input frequency ranges as shown in 8-4 and 8-5 (assuming 50 Ω source impedance).

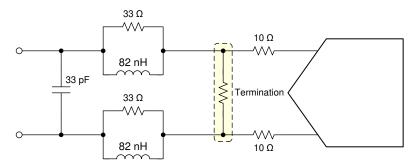


图 8-4. Sampling glitch filter example for input frequencies from DC to 60 MHz

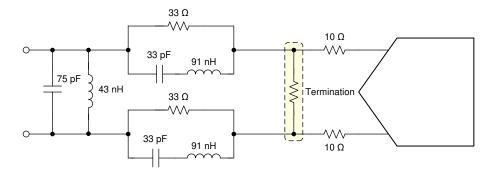


图 8-5. Sampling glitch filter example for input frequencies from 60 to 120 MHz

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3.1.2.2 Analog Input Termination and DC Bias

Depending on the input drive circuitry, a termination network and/or DC biasing needs to be provided.

8.3.1.2.2.1 AC-Coupling

The ADC3664 requires external DC bias using the common mode output voltage (VCM) of the ADC together with the termination network as shown in 8-6. The termination is located within the glitch filter network. When using a balun on the input, the termination impedance has to be adjusted to account for the turns ratio of the transformer. When using an amplifier, the termination impedance can be adjusted to optimize the amplifier performance.

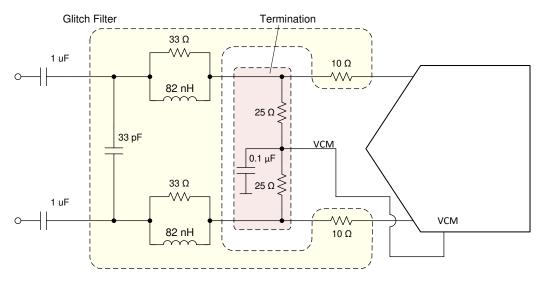


图 8-6. AC-Coupling: termination network provides DC bias (glitch filter example for up to 60 MHz)

8.3.1.2.2.2 DC-Coupling

In DC coupled applications the DC bias needs to be provided from the fully differential amplifier (FDA) using VCM output of the ADC as shown in 88-7. The glitch filter in this case is located between the anti-alias filter and the ADC. No termination may be needed if amplifier is located close to the ADC or if the termination is part of the anti-alias filter.

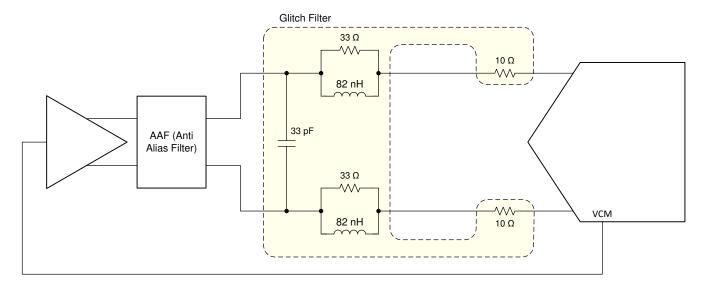
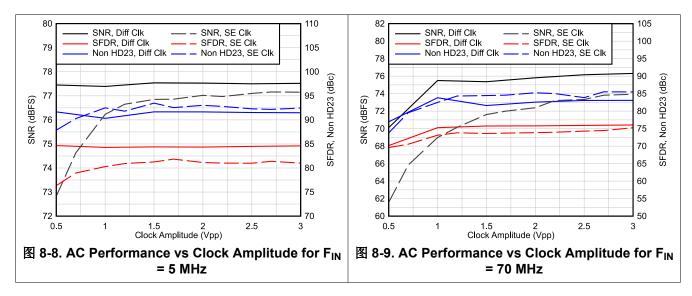



图 8-7. DC-Coupling: DC bias provided by FDA (glitch filter example for DC - 60 MHz)

8.3.2 Clock Input

In order to maximize the ADC SNR performance, the external sampling clock should be low jitter and differential signaling with a high slew rate. This is especially important in IF sampling applications (图 8-8 and 图 8-9). For less jitter sensitive applications, the ADC3664 provides the option to operate with single ended signaling which saves additional power consumption.

8.3.2.1 Single Ended vs Differential Clock Input

The ADC3664 can be operated using a differential or a single ended clock input where the single ended clock consumes less power consumption. However clock amplitude impacts the ADC aperture jitter and consequently the SNR. For maximum SNR performance, a large clock signal with fast slew rates needs to be provided.

- Differential Clock Input: The clock input can be AC coupled externally. The ADC3664 provides internal biasing for that use case.
- Single Ended Clock Input: This mode needs to be configured using SPI register (0x0E, D2 and D0) or with the REFBUF pin. In this mode there is no internal clock biasing and thus the clock input needs to be DC coupled around a 0.9V center. The unused input needs to be AC coupled to ground.

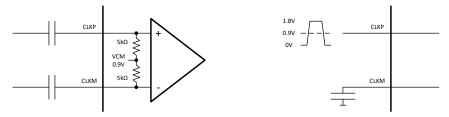


图 8-10. External and internal connection using differential (left) and single ended (right) clock input

8.3.3 Voltage Reference

The ADC3664 provides three different options for supplying the voltage reference to the ADC. An external 1.6V reference can be directly connected to the VREF input; a voltage 1.2V reference can be connected to the REFBUF input using the internal gain buffer or the internal 1.2V reference can be enabled to generate a 1.6V reference voltage. For best performance, the reference noise should be filtered by connecting a 10 uF and a 0.1 uF ceramic bypass capacitor to the VREF pin. The internal reference circuitry of the ADC3664 is shown in 8-11.

备注

The voltage reference mode can be selected using SPI writes or by using the REFBUF pin (default) as a control pin (\dagger 8.5.1). If the REFBUF pin is not used for configuration, the REFBUF pin should be connected to AVDD (even though the REFBUF pin has a weak internal pullup to AVDD) and the voltage reference option has to be selected using the SPI interface.

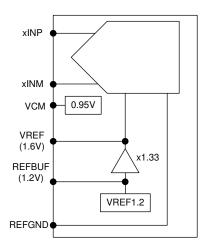


图 8-11. Different voltage reference options for ADC3664

8.3.3.1 Internal voltage reference

The 1.6V reference for the ADC can be generated internal using the on-chip 1.2V reference along with the internal gain buffer. A 10 uF and a 0.1 uF ceramic bypass capacitor (C_{VREF}) should be connected between the VREF and REFGND pins as close to the pins as possible.

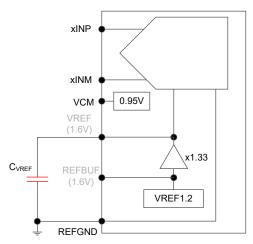


图 8-12. Internal reference

8.3.3.2 External voltage reference (VREF)

For highest accuracy and lowest temperature drift, the VREF input can be directly connected to an external 1.6V reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (C_{VREF}) should be connected between the VREF and REFGND pins and placed as close to the pins as possible is recommended. The load current from the external reference is about 1mA.

Note: The internal reference is also used for other functions inside the device, therefore the reference amplifier should only be powered down in power down state but not during normal operation.

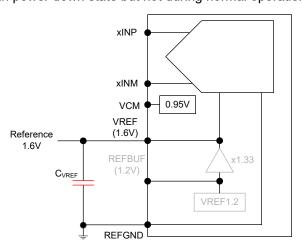


图 8-13. External 1.6V reference

8.3.3.3 External voltage reference with internal buffer (REFBUF)

The ADC3664 is equipped with an on-chip reference buffer that also includes gain to generate the 1.6V reference voltage from an external 1.2V reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (C_{VREF}) between the VREF and REFGND pins and a 10 uF and a 0.1 uF ceramic bypass capacitor between the REFBUF and REFGND pins are recommended. Both capacitors should be placed as close to the pins as possible. The load current from the external reference is less than 100uA.

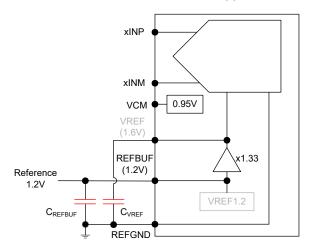


图 8-14. External 1.2V reference using internal reference buffer

8.3.4 Digital Down Converter

The ADC3664 includes an optional on-chip digital down conversion (DDC) decimation filter that can be enabled via SPI register settings. It supports complex decimation by 2, 4, 8, 16 and 32 using a digital mixer and a 32-bit numerically controlled oscillator (NCO) as shown in 88-15. Furthermore it supports a mode with real decimation where the complex mixer is bypassed (NCO should be set to 0 for lowest power consumption) and the digital filter acts as a low pass filter.

Internally the decimation filter calculations are performed with a 20-bit resolution in order to avoid any SNR degradation due to quantization noise limitation. The Output Formatter truncates to the selected resolution prior to outputting the data on the digital interface.

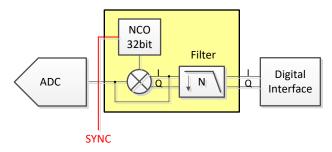


图 8-15. Internal Digital Decimation Filter

8.3.4.1 DDC MUX

The ADC3664 contains a MUX in front of the digital decimation filter which allows the ADC channel A input to be connected to the DDC of channel B and vice versa.

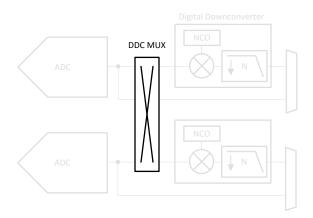


图 8-16. DDC MUX

8.3.4.2 Digital Filter Operation

The complex decimation operation is illustrated with an example in $\[mu]$ 8-17. First the input signal (and the negative image) are frequency shifted by the NCO frequency as shown on the left. Next a digital filter is applied (centered around 0 Hz) and the output data rate is decimated - in this example the output data rate $F_{S,OUT} = F_S/8$ with a Nyquist zone of $F_S/16$. During the complex mixing the spectrum (signal and noise) is split into real and complex parts and thus the amplitude is reduced by 6-dB. In order to compensate this loss, there is a 6-dB digital gain option in the decimation filter block that can be enabled via SPI write.

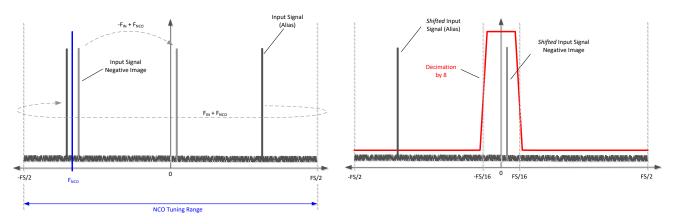


图 8-17. Complex decimation illustration

The real decimation operation is illustrated with an example in \boxtimes 8-18. There is no frequency shift happening and only the real portion of the complex digital filter is exercised. The output data rate is decimated - a decimation of 8 would result in an output data rate $F_{S,OUT} = F_S/8$ with a Nyquist zone of $F_S/16$.

During the real mixing the spectrum (signal and noise) amplitude is reduced by 3-dB. In order to compensate this loss, there is a 3-dB digital gain option in the decimation filter block that can be enabled via SPI write.

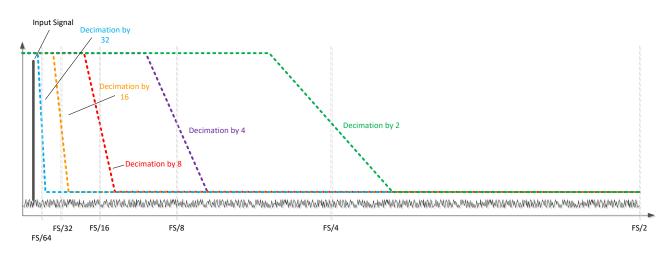


图 8-18. Real decimation illustration

8.3.4.3 FS/4 Mixing with Real Output

In this mode, the output after complex decimation gets mixed with FS/4 (FS = output data rate in this case). Instead of a complex output with the input signal centered around 0 Hz, the output is transmitted as a real output at twice the data rate and the signal is centered around FS/4 (Fout/4) as illustrated in 88-19.

In this example, complex decimation by 8 is used. The output data is transmitted as a real output with an output rate of Fout = FS'/4 (FS' = ADC sampling rate). The input signal is now centered around FS/4 (Fout/4) or FS'/16.

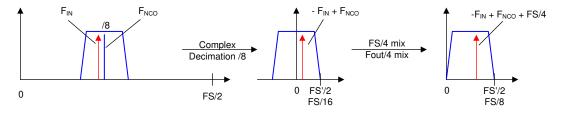


图 8-19. FS/4 Mixing with real output

8.3.4.4 Numerically Controlled Oscillator (NCO) and Digital Mixer

The decimation block is equipped with a 32-bit NCO and a digital mixer to fine tune the frequency placement prior to the digital filtering. The oscillator generates a complex exponential sequence of:

$$e^{j\omega n}$$
 (default) or $e^{-j\omega n}$

where: frequency (ω) is specified as a signed number by the 32-bit register setting

The complex exponential sequence is multiplied with the real input from the ADC to mix the desired carrier to a frequency equal to $f_{\rm IN}$ + $f_{\rm NCO}$. The NCO frequency can be tuned from $-F_{\rm S}/2$ to $+F_{\rm S}/2$ and is processed as a signed, 2s complement number. After programming a new NCO frequency, the MIXER RESTART register bit or SYNC pin has to be toggled for the new frequency to get active. Additionally the ADC3664 provides the option via SPI to invert the mixer phase.

The NCO frequency setting is set by the 32-bit register value given and calculated as:

NCO frequency = 0 to +
$$F_S/2$$
: NCO = $f_{NCO} \times 2^{32} / F_S$

NCO frequency =
$$-F_S/2$$
 to 0: NCO = $(f_{NCO} + F_S) \times 2^{32} / F_S$

where:

- NCO = NCO register setting (decimal value)
- f_{NCO} = Desired NCO frequency (MHz)
- F_S = ADC sampling rate (MSPS)

The NCO programming is further illustrated with this example:

- ADC sampling rate F_S = 125 MSPS
- Input signal f_{IN} = 10 MHz
- Desired output frequency f_{OUT} = 0 MHz

For this example there are actually four ways to program the NCO and achieve the desired output frequency as shown in $\frac{1}{8}$ 8-1.

表 8-1. NCO value calculations example

Alias or negative image	f _{NCO}	NCO Value	Mixer Phase	Frequency translation for f _{OUT}
f _{IN} = - 10 MHz	f _{NCO} = 10 MHz	343597384	as is	$f_{OUT} = f_{IN} + f_{NCO} = -10 \text{ MHz} + 10 \text{ MHz} = 0 \text{ MHz}$
f _{IN} = 10 MHz	f _{NCO} = - 10 MHz	4638564680	as 15	$f_{OUT} = f_{IN} + f_{NCO} = 10 \text{ MHz} + (-10 \text{ MHz}) = 0 \text{ MHz}$

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 8-1. NCO value calculations example (continued)

Alias or negative image	f _{NCO}	NCO Value	Mixer Phase	Frequency translation for f _{OUT}
f_{IN} = 10 MHz	f _{NCO} = 10 MHz	343597384		$f_{OUT} = f_{IN} - f_{NCO} = 10 \text{ MHz} - 10 \text{ MHz} = 0 \text{ MHz}$
f _{IN} = - 10 MHz	f _{NCO} = -10 MHz	4638564680	inverted	$f_{OUT} = f_{IN} - f_{NCO} = -10 \text{ MHz} - (-10 \text{ MHz}) = 0$ MHz

6.25 MHz

3.125 MHz

1.5625 MHz

Real

8

16 32 F_S / 8 real

F_S / 16 real

F_S / 32 real

8.3.4.5 Decimation Filter

The ADC3664 supports complex decimation by 2, 4, 8, 16 and 32 with a pass-band bandwidth of \sim 80% and a stopband rejection of at least 85 dB. \gtrsim 8-2 gives an overview of the pass-band bandwidth of the different decimation settings with respect to ADC sampling rate F_S . In real decimation mode the output bandwidth is half of the complex bandwidth.

W.	2 0-2. Decimation i inter duminary and maximum Available dutput bandwidth									
REAL/COMPLEX DECIMATION			OUTPUT BANDWIDTH	OUTPUT RATE (F _S = 125 MSPS)	OUTPUT BANDWIDTH (F _S = 125 MSPS)					
	2	F _S / 2 complex	0.8 × F _S / 2	62.5 MSPS complex	50 MHz					
	4	F _S / 4 complex	0.8 × F _S / 4	31.25 MSPS complex	25 MHz					
Complex	8	F _S / 8 complex	0.8 × F _S / 8	15.625 MSPS complex	12.5 MHz					
	16	F _S / 16 complex	0.8 × F _S / 16	7.8125 MSPS complex	6.25 MHz					
	32	F _S / 32 complex	0.8 × F _S / 32	3.90625 MSPS complex	3.125 MHz					
	2	F _S / 2 real	0.4 × F _S / 2	62.5 MSPS	25 MHz					
	4	F _S / 4 real	0.4 × F _S / 4	31.25 MSPS	12.5 MHz					

表 8-2. Decimation Filter Summary and Maximum Available Output Bandwidth

The decimation filter responses normalized to the ADC sampling clock frequency are illustrated in № 8-21 to № 8-30. They are interpreted as follows:

 $0.4 \times F_{S} / 8$

 $0.4 \times F_{S} / 16$

 $0.4 \times F_{S} / 32$

15.625 MSPS

7.8125 MSPS

3.90625 MSPS

Each figure contains the filter pass-band, transition band(s) and alias or stop-band(s) as shown in \boxtimes 8-20. The x-axis shows the offset frequency (after the NCO frequency shift) normalized to the ADC sampling rate F_S .

For example, in the divide-by-4 complex setup, the output data rate is F_S / 4 complex with a Nyquist zone of F_S / 8 or 0.125 × F_S . The transition band (colored in blue) is centered around 0.125 × F_S and the alias transition band is centered at 0.375 × F_S . The stop-bands (colored in red), which alias on top of the pass-band, are centered at 0.25 × F_S and 0.5 × F_S . The stop-band attenuation is greater than 85 dB.

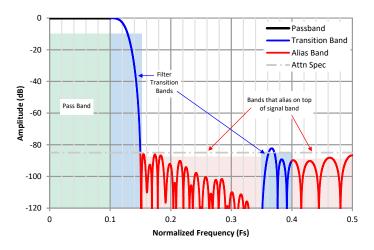
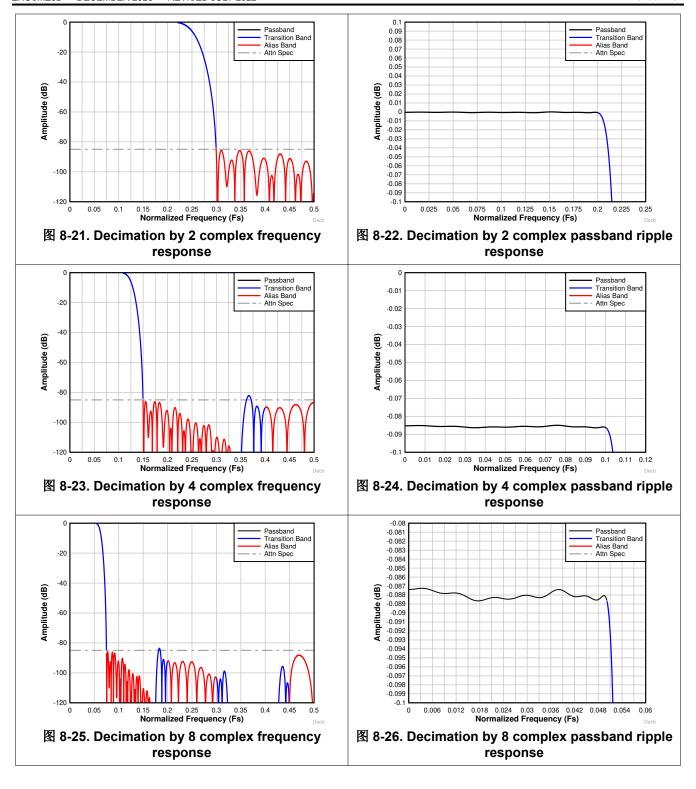
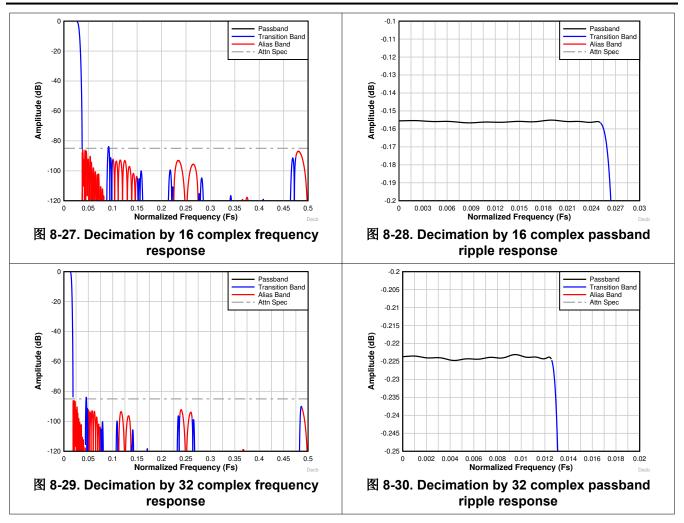




图 8-20. Interpretation of the Decimation Filter Plots

8.3.4.6 SYNC

The PDN/SYNC pin can be used to synchronize multiple devices using an external SYNC signal. The PDN/SYNC pin can be configured via SPI (SYNC EN bit) from power down to synchronization functionality and is latched in by the rising edge of the sampling clock as shown in

8 8-31.

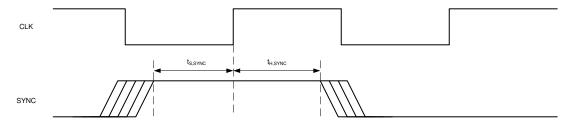


图 8-31. External SYNC timing diagram

The synchronization signal is only required when using the decimation filter - either using the SPI SYNC register or the PDN/SYNC pin. It resets internal clock dividers used in the decimation filter and aligns the internal clocks as well as I and Q data within the same sample. If no SYNC signal is given, the internal clock dividers is not be synchronized, which can lead to a fractional delay across different devices. The SYNC signal also resets the NCO phase and loads the new NCO frequency (same as the MIXER RESTART bit).

When trying to resynchronize during operation, the SYNC toggle should occur at 64*K clock cycles, where K is an integer. This provids the phase continuity of the clock divider.

8.3.4.7 Output Formatting with Decimation

When using decimation, the output data is formatted as shown in 8 - 32 and 8 - 33. The examples are shown for 16-bit output for 2-wire (8x serialization), 1-wire (16x serialization) and 1/2-wire (32x serialization).

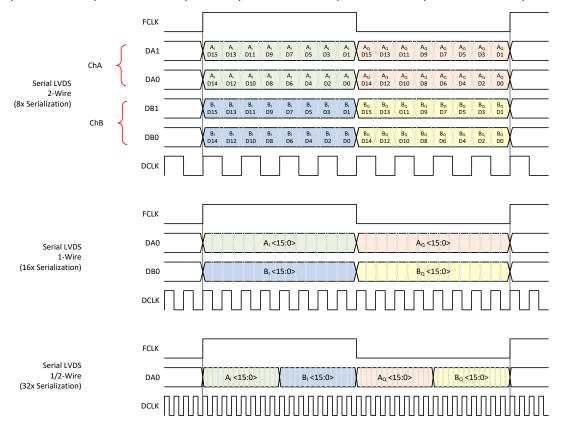


图 8-32. Output Data Format in Complex Decimation

表 8-3 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK frequencies based on output resolution (R), number of SLVDS lanes (L) and complex decimation setting (N).

Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output resolution and complex decimation by 4.

表 8-3. Serial LVDS Lane Rate Examples with Complex Decimation and 16-bit Output Resolution

DECIMATION SETTING	ADC SAMPLING RATE	OUTPUT RESOLUTION	# of WIRES	FCLK	DCLKIN, DCLK	DA/B0,1
N	F _S	R	L	F _S /N	[DA/B0,1] / 2	F _S x 2 x R/L/N
	125 MSPS		2	31.25 MHz	250 MHz	500 MHz
4		16	1	31.23 1/11/12	500 MHz	1000 MHz
	55 MSPS		1/2	15.625 MHz	500 MHz	1000 MHz

Submit Document Feedback

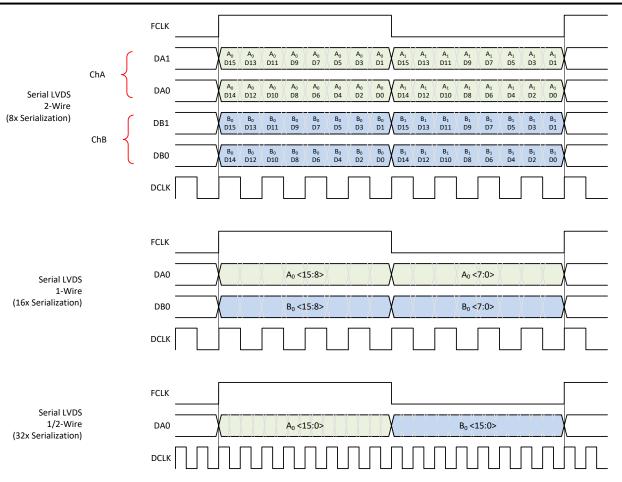


图 8-33. Output Data Format in Real Decimation

表 8-4 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK frequencies based on output resolution (R), number of SLVDS lanes (L) and real decimation setting (M).

Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output resolution and real decimation by 4.

表 8-4. Serial LVDS Lane Rate Examples with Real Decimation and 16-bit Output Resolution

	DECIMATION SETTING	ADC SAMPLING RATE	OUTPUT RESOLUTION	# of WIRES	FCLK	DCLKIN, DCLK	DA/B0,1
	М	F _S	R	L	F _S / M / 2 (L = 2) F _S / M (L = 1, 1/2)	[DA/B0,1] / 2	F _S x R / L / M
Γ		125 MSPS	16	2	15.625 MHz	125 MHz	250 MHz
	4			1	- 31.25 MHz	250 MHz	500 MHz
				1/2		500 MHz	1000 MHz

8.3.5 Digital Interface

The serial LVDS interface supports the data output with 2-wire, 1-wire and 1/2-wire operation. The actual data output rate depends on the output resolution and number of lanes used.

The ADC3664 requires an external serial LVDS clock input (DCLKIN), which is used to transmit the data out of the ADC along with the data clock (DCLK). The phase relationship between DCLKIN and the sampling clock is irrelevant but both clocks need to be frequency locked. The SLVDS interface is configured using SPI register writes.

8.3.5.1 Output Formatter

The digital output interface utilizes a flexible output bit mapper (
8-34). The bit mapper takes the 14-bit output directly from the ADC or from digital filter block and reformats it to a resolution of 14, 16, 18 or 20-bit. The output serialization factor gets adjusted accordingly for 2-, 1- and 1/2-wire interface mode. The maximum output data rate can not be exceeded independently of output resolution and serialization factor.

When using 16-bit or higher output resolution in non-decimation mode, the 2 LSBs are set to 0.

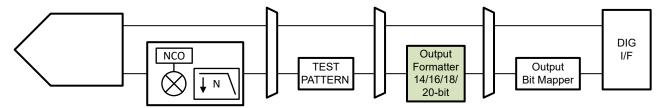


图 8-34. Interface output bit mapper

 \gtrsim 8-5 provides an overview for the resulting serialization factor depending on output resolution and output modes. Note that the DCLKIN frequency needs to be adjusted accordingly as well. Changing the output resolution to 16-bit, 2-wire mode for example would result in DCLKIN = F_S * 4 instead of * 3.5.

The output bit mapper can be used for bypass and decimation filter.

OUTPUT RESOLUTION	Interface	SERIALIZATION	FCLK	DCLKIN	DCLK	D0/D1
	2-Wire	7x	F _S /2	F _S * 3.5	F _S * 3.5	F _S * 7
14-bit (default)	1-Wire	14x	F _S	F _S * 7	F _S * 7	F _S * 14
	1/2-Wire	28x	F _S	F _S * 14	F _S * 14	F _S * 28
	2-Wire	8x	F _S /2	F _S * 4	F _S * 4	F _S * 8
16-bit	1-Wire	16x	F _S	F _S * 8	F _S * 8	F _S * 16
	1/2-Wire	32x	F _S	F _S * 16	F _S * 16	F _S * 32
	2-Wire	9x	F _S /2	F _S * 4.5	F _S * 4.5	F _S * 9
18-bit	1-Wire	18x	F _S	F _S * 9	F _S * 9	F _S * 18
	1/2-Wire	36x	F _S	F _S * 18	F _S * 18	F _S * 36
	2-Wire	10x	F _S /2	F _S * 5	F _S * 5	F _S * 10
20-bit	1-Wire	20x	F _S	F _S * 10	F _S * 10	F _S * 20
	1/2-Wire	40x	F _S	F _S * 20	F _S * 20	F _S * 40

表 8-5. Serialization factor vs output resolution for different output modes

The programming sequence to change the output interface and/or resolution from default settings is shown in Output Interface/Mode Configuration.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3.5.2 Output Bit Mapper

The output bit mapper allows change to the output bit order for any selected interface mode.

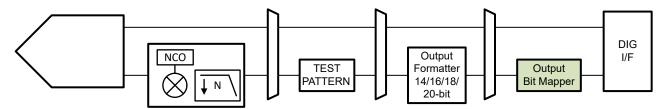


图 8-35. Output Bit Mapper

It is a two step process to change the output bit mapping and assemble the output data bus:

- 1. Both output channel A and B can have up to 20-bit output. Each output bit of either channel has a unique identifier bit as shown in 表 8-6. The MSB starts with bit D19 depending on output resolution chosen the LSB would be D6 (14-bit) to D0 (20-bit). The 'previous sample' is only needed in 2-w mode.
- 2. The bit mapper is then used to assemble the output sample. The following sections detail how to remap the serial output format.

& 6-6. Offique identifier of each data bit										
Bit	Chan	nel A	Chan	nel B						
	Previous sample (2w only)	Current sample	Previous sample (2w only)	Current sample						
D19 (MSB)	0x2D	0x6D	0x29	0x69						
D18	0x2C	0x6C	0x28	0x68						
D17	0x27	0x67	0x23	0x63						
D16	0x26	0x66	0x22	0x62						
D15	0x25	0x65	0x21	0x61						
D14	0x24	0x64	0x20	0x60						
D13	0x1F	0x5F	0x1B	0x5B						
D12	0x1E	0x5E	0x1A	0x5A						
D11	0x1D	0x5D	0x19	0x59						
D10	0x1C	0x5C	0x18	0x58						
D9	0x17	0x57	0x13	0x53						
D8	0x16	0x56	0x12	0x52						
D7	0x15	0x55	0x11	0x51						
D6	0x14	0x54	0x10	0x50						
D5	0x0F	0x4F	0x0B	0x4B						
D4	0x0E	0x4E	0x0A	0x4A						
D3	0x0D	0x4D	0x09	0x49						
D2	0x0C	0x4C	0x08	0x48						
D1	0x07	0x47	0x03	0x43						
D0 (LSB)	0x06	0x46	0x02	0x42						

表 8-6. Unique identifier of each data bit

In the serial output mode, a data bit (with unique identifier) needs to be assigned to each location within the serial output stream. There are a total of 40 addresses available per channel. Channel A spans from address 0x39 to 0x60 and channel B from address 0x61 to 0x88. When using complex decimation, the output bit mapper is applied to both the "I" and the "Q" sample.

2-wire mode: in this mode both the current and the previous sample have to be used in the address space as shown in 88-36. The address order is different for 14/18-bit and 16/20-bit. Note: there are unused addresses between samples for resolution less than 20-bit (grey back ground), which can be skipped if not used.

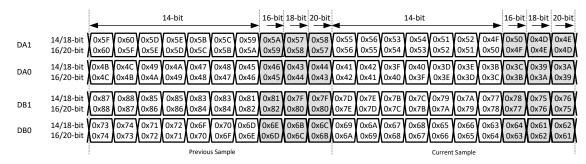


图 8-36. 2-wire output bit mapper

In the following example (
8-37), the 16-bit 2-wire serial output is reordered to where lane DA1/DB1 carries the 8 MSB and lane DA0/DB0 carries 8 LSBs.

				Previous	Sample				Current Sample							
DA1	D19 _A	D18 _A	D17 _A	D16 _A	D15 _A	D14 _A	D13 _A	D12 _A	D19 _A	D18 _A	D17 _A	D16 _A	D15 _A	D14 _A	D13 _A	D12 _A
	(0x60	(0x5F	(0x5E	(0x5D	(0x5C	(0x5B	(0x5A	(0x59	(0x56	(0x55	(0x54	(0x53	(0x52	(0x51	(0x50	(0x4F
	0x2D)	0x2C)	0x27)	0x26)	0x25)	0x24)	0x1F)	0x1E)	0x6D)	0x6C)	0x67)	0x66)	0x65)	0x64)	0x5F)	0x5E)
DA0	D11 _A	D10 _A	D9 _A	D8 _A	D7 _A	D6 _A	D5 _A	D4 _A	D11 _A	D10 _A	D9 _A	D8 _A	D7 _A	D6 _A	D5 _A	D4 _A
	(0x4C	(0x4B	(0x4A	(0x49	(0x48	(0x47	(0x46	(0x45	(0x42	(0x41	(0x40	(0x39	(0x38	(0x37	(0x36	(0x35
	0x1D)	0x1C)	0x17)	0x16)	0x15)	0x14)	0x0F)	0x0E)	0x5D)	0x5C)	0x57)	0x56)	0x55)	0x54)	0x4F)	0x4E)
DB1	D19 _B	D18 _B	D17 _B	D16 _B	D15 _B	D14 _B	D13 _B	D12 _B	D19 _B	D18 _B	D17 _B	D16 _B	D15 _B	D14 _B	D13 _B	D12 _B
	(0x88	(0x87	(0x86	(0x85	(0x84	(0x83	(0x82	(0x81	(0x7E	(0x7D	(0x7C	(0x7B	(0x7A	(0x79	(0x78	(0x77
	0x29)	0x28)	0x23)	0x22)	0x21)	0x20)	0x1B)	0x1A)	0x69)	0x68)	0x63)	0x62)	0x61)	0x60)	0x5B)	0x5A)
DB0	D11 _B (0x74 0x19)	D10 _B (0x73 0x18)	D9 _B (0x72 0x13)	D8 _B (0x71 0x12)	D7 _B (0x70 0x11)	D6 ₈ (0x6F 0x10)	D5 _B (0x6E 0x0B)	D4 _B (0x6D 0x0A)	D11 _B (0x6A 0x59)	D10 _B (0x69 0x58)	D9 _B (0x68 0x53)	D8 _B (0x67 0x52)	D7 _B (0x66 0x51)	D6 ₈ (0x65 0x50)	D5 _B (0x64 0x4B)	0x63 0x4A)

图 8-37. Example: 2-wire output bit mapping

1-wire mode: Only the 'current' sample needs to programmed in the address space. If desired, it can be duplicated on DA1/DB1 as well (using addresses shown below) in order to have a redundant output. Lane DA1/DB1 needs to be powered up in that case.

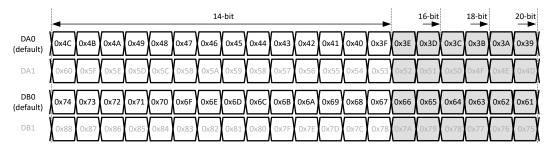


图 8-38. 1-wire output bit mapping

½-wire mode: The output is only lane DA0 and the sample order is programmed into the 40 addresses of chA (from 0x39 to 0x60). It covers 2 samples (one for chA, one for chB) as shown below. If desired, it can be duplicated on DB0 as well (using addresses shown ☒ 8-39) in order to have a redundant output. Lane DB0 needs to be powered up in that case.

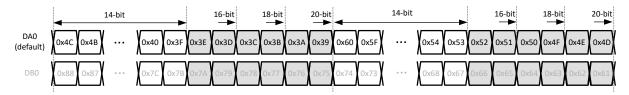


图 8-39. 1/2-wire output bit mapping

8.3.5.3 Output Interface/Mode Configuration

The following sequence summarizes all the relevant registers for changing the output interface and/or enabling the decimation filter. Steps 1 and 2 must come first since the E-Fuse load reset the SPI writes, the remaining steps can come in any order.

表 8-7. Configuration steps for changing interface or decimation

		表 8-7. Configuration steps for changing interface or decimation									
STEP	FEATURE	ADDRESS			DESCRIPTION						
			Select the output in	terface bit mapping d	lepending on resolut	ion and output interfa	ice.				
			Output R	esolution	2-wire	1-wire	1/2-wire				
1		0x07	14-bit 0x2B								
-			16-bit 0x4B		0x6C	0x8D					
			18-bit		0x2B	J SAGO	UXOD				
			20	-bit	0x4B						
2		0x13		erface bit mapping us that bit mapping is I		r (0x13, D0). Progran wed by 0x13 0x00.	n register 0x13 to				
			Configure the FCLK	frequency based on	bypass/decimation	and number of lanes	used.				
			Bypass/Dec	SLVDS	FCLK SRC (D7)	FCLK DIV (D4)	TOG FCLK (D0)				
				2-wire	0	1	0				
3		0x19	Bypass/ Real Decimation	1-wire	0	0	0				
				1/2-wire	0	0	0				
	Output	Output Interface		2-wire	1	0	0				
			Complex Decimation	1-wire	1	0	0				
				1/2-wire	0	0	1				
4		0x1B	Select the output interface resolution using the bit mapper (D5-D3).								
			Select the FCLK pa	ttern for decimation f	or proper duty cycle	output of the frame c	lock.				
				Output Resolution	2-wire	1-wire	1/2-wire				
				14-bit		0xFE000					
			Real Desimation	14-bit 16-bit		0xFE000 0xFF000	use default				
E		0x20	Real Decimation				use default				
5		0x20 0x21 0x22	Real Decimation	16-bit	ugo dofoult	0xFF000	use default				
5		0x21	Real Decimation	16-bit 18-bit	use default	0xFF000 0xFF800	use default				
5		0x21	Real Decimation Complex	16-bit 18-bit 20-bit	use default	0xFF000 0xFF800 0xFFC00					
5		0x21		16-bit 18-bit 20-bit 14-bit	use default	0xFF000 0xFF800	use default 0xFFFFF				
5		0x21	Complex	16-bit 18-bit 20-bit 14-bit 16-bit	use default	0xFF000 0xFF800 0xFFC00					
5		0x21	Complex Decimation	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit		0xFF000 0xFF800 0xFFC00	0xFFFFF				
		0x21 0x22 0x390x60	Complex Decimation Change output bit n	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit apping for chA and		0xFF000 0xFF800 0xFFC00 0xFFFFF	0xFFFFF				
6		0x21 0x22 0x390x60 0x610x88	Complex Decimation Change output bit n selection.	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit napping for chA and		0xFF000 0xFF800 0xFFC00 0xFFFFF	0xFFFFF				
6 7		0x21 0x22 0x390x60 0x610x88	Complex Decimation Change output bit n selection. Enable the decimat Configure the decimat	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit napping for chA and dion filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF	0xFFFFF efault interface				
6 7 8	Decimation	0x21 0x22 0x390x60 0x610x88 0x24 0x25 0x2A/B/C/D	Complex Decimation Change output bit n selection. Enable the decimat Configure the decim	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit napping for chA and dion filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF works also with the decire skipped for real decire.	0xFFFFF efault interface				
6 7 8	Decimation Filter	0x21 0x22 0x390x60 0x610x88 0x24 0x25 0x2A/B/C/D 0x31/2/3/4	Complex Decimation Change output bit n selection. Enable the decimat Configure the decim	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit mapping for chA and sion filter nation filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF works also with the decire skipped for real decire.	0xFFFFF efault interface				
6 7 8		0x21 0x22 0x390x60 0x610x88 0x24 0x25 0x2A/B/C/D 0x31/2/3/4	Complex Decimation Change output bit is selection. Enable the decimat Configure the deciment Program the NCO for Configure the complex is a selection.	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit mapping for chA and sion filter nation filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF works also with the deciration	0xFFFFF efault interface				
6 7 8 9		0x21 0x22 0x390x60 0x610x88 0x24 0x25 0x2A/B/C/D 0x31/2/3/4	Complex Decimation Change output bit n selection. Enable the decimat Configure the decim Program the NCO f Configure the comp	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit mapping for chA and sion filter nation filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF works also with the deciration e skipped for real deciration) OP-Order (D4)	0xFFFFF efault interface imation) Q-Delay (D3)				
6 7 8 9		0x21 0x22 0x390x60 0x610x88 0x24 0x25 0x2A/B/C/D 0x31/2/3/4	Complex Decimation Change output bit is selection. Enable the decimat Configure the decim Program the NCO f Configure the comp SLVDS 2-wire	16-bit 18-bit 20-bit 14-bit 16-bit 18-bit 20-bit mapping for chA and sion filter nation filter	chB if desired. This v	0xFF000 0xFF800 0xFFC00 0xFFFFF works also with the deciration) OP-Order (D4) 1	0xFFFFF efault interface imation) Q-Delay (D3) 0				

8.3.5.3.1 Configuration Example

The following is a step by step programming example to configure the ADC3664 to complex decimation by 8 with 1-wire SLVDS and 16-bit output.

- 1. 0x07 (address) 0x6C (load bit mapper configuration for 16-bit output with 1-wire SLVDS)
- 2. 0x13 0x01, wait 1 ms, 0x13 0x00 (load e-fuse)
- 3. 0x19 0x80 (configure FCLK)
- 4. 0x1B 0x88 (select 16-bit output resolution)
- 5. 0x20 0xFF, 0x21 0xFF, 0x22 0x0F (configure FCLK pattern)
- 6. 0x24 0x06 (enable decimation filter)
- 7. 0x25 0x30 (configure complex decimation by 8)
- 8. 0x2A/B/C/D and 0x31/32/33/34 (program NCO frequency)
- 9. 0x27/0x2E 0x08 (configure Q-delay register bit)
- 10. 0x26 0xAA, 0x26 0x88 (set digital mixer gain to 6-dB and toggle the mixer update)

8.3.5.4 Output Data Format

The output data can be configured to two's complement (default) or offset binary formatting using SPI register writes (register 0x8F and 0x92). 表 8-8 provides an overview for minimum and maximum output codes for the two formatting options. The actual output resolution is set by the output bit mapper.

表 8-8. Overview of minimum and maximum output codes vs output resolution for different formatting

	Two's Comple	ement (default)	Offset Binary		
RESOLUTION (BIT)	14	16	14	16	
$V_{IN,MAX}$	0x1FFF	0x7FFF	0x3FFF	0xFFFF	
0	0x0	000	0x2000	0x8000	
$V_{IN,MIN}$	0x2000	0x8000	0x0	000	

8.3.6 Test Pattern

In order to enable in-circuit testing of the digital interface, the following test patterns are supported and enabled via SPI register writes (0x14/0x15/0x16). The test pattern generator is located after the decimation filter as shown in 8-40. In decimation mode (real and complex), the test patterns replace the output data of the DDC - however channel A controls the test patterns for both channels.

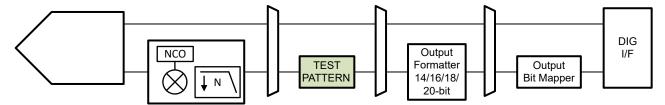


图 8-40. Test Pattern Generator

- RAMP Pattern: The step size needs to be configured in the CUSTOM PAT register according to the native resolution of the ADC. When selecting a higher output resolution then the additional LSBs will still be 0 in RAMP pattern mode.
 - 00001: 18-bit output resolution
 - 00100: 16-bit output resolution
 - 10000: 14-bit output resolution
- Custom Pattern: Configured in the CUSTOM PAT register

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.4 Device Functional Modes

8.4.1 Normal operation

In normal operating mode, the entire ADC full scale range gets converted to a digital output with 14-bit resolution. The output is available in as little as 1 clock cycle on the digital outputs.

8.4.2 Power Down Options

A global power down mode can be enabled via SPI as well as using the power down pin (PDN/SYNC). There is an internal pull-down 21 k Ω resistor on the PDN/SYNC input pin and the pin is active high - so the pin needs to be pulled high externally to enter global power down mode.

The SPI register map provides the capability to enable/disable individual blocks directly or via PDN pin mask in order to trade off power consumption vs wake up time as shown in $\frac{1}{8}$ 8-9.

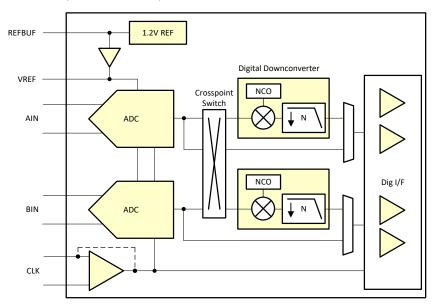


图 8-41. Power Down Configurations

表 8-9. Overview of Power Down Options

Function/ Register	PDN via SPI	Mask for Global PDN	Feature - Default	Power Impact	Wake-up time	Comment
ADC	Yes	-	Enabled			Both ADC channels are included in Global PDN automatically
Reference gain amplifier	Yes		Enabled	~ 0.4 mA	~3 us	Should only be powered down in power down state.
Internal 1.2V reference	Yes	Yes	External ref	~ 1-3.5 mA	~3 ms	Internal/external reference selection is available through SPI and REFBUF pin.
Clock buffer	Yes		Differential clock	~ 1 mA	n/a	Single ended clock input saves ~ 1mA compared to differential. Some programmability is available through the REFBUF pin.
Output interface drivers	Yes	-	Enabled	varies	n/a	Depending on output interface mode, unused output drivers can be powered down for maximum power savings
Decimation filter	Yes	-	Disabled	see electrical table	n/a	

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

8.5 Programming

The device is primarily configured and controlled using the serial programming interface (SPI) however it can operate in a default configuration without requiring the SPI interface. Furthermore the power down function as well as internal/external reference configuration is possible via pin control (PDN/SYNC and REFBUF pin).

备注

The power down command (via PIN or SPI) only goes in effect with the ADC sampling clock present.

After initial power up, the default operating configuration is shown in $\frac{1}{8}$ 8-10.

表 8-10. Default device configuration after power up

FEATURE	DEFAULT			
Signal Input	Differential			
Clock Input	Differential			
Reference	External			
Decimation	DDC bypass			
Interface	2-wire			
Output Format	2s complement			

8.5.1 Configuration using PINs only

The ADC voltage reference can be selected using the REFBUF pin. Even though there is an internal 100 k Ω pull-up resistor to AVDD, the REFBUF pin should be set to a voltage externally and not left floating. When using a voltage divider to set the REFBUF voltage (R1 and R2 in 8-42), resistor values < 5 k Ω should be used.

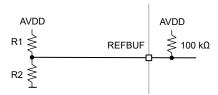


图 8-42. Configuration of external voltage on REFBUF pin

表 8-11. REFBUF voltage levels control voltage reference selection

REFBUF VOLTAGE	VOLTAGE REFERENCE OPTION	CLOCKING OPTION
> 1.7 V (Default)	External reference	Differential clock input
1.2 V (1.15-1.25V)	External 1.2V input on REFBUF pin using internal gain buffer	Differential clock input
0.5 - 0.7V	Internal reference	Differential clock input
< 0.1V	Internal reference	Single ended clock input

8.5.2 Configuration using the SPI interface

The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock) and SDIO (serial interface data input/output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data input are latched at every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can function with SCLK frequencies from 12 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.

Product Folder Links: ADC3664

8.5.2.1 Register Write

The internal registers can be programmed following these steps:

- 1. Drive the SEN pin low
- 2. Set the R/W bit to 0 (bit A15 of the 16-bit address) and bits A[14:12] in address field to 0.
- 3. Initiate a serial interface cycle by specifying the address of the register (A[11:0]) whose content is written and
- 4. Write the 8-bit data that are latched in on the SCLK rising edges

8-43 shows the timing requirements for the serial register write operation.

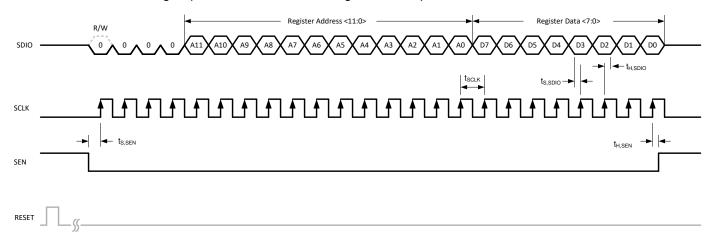


图 8-43. Serial Register Write Timing Diagram

8.5.2.2 Register Read

The device includes a mode where the contents of the internal registers can be read back using the SDIO pin. This readback mode can be useful as a diagnostic check to verify the serial interface communication between the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:

- 1. Drive the SEN pin low
- 2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers. Set A[14:12] in address field to 0.
- 3. Initiate a serial interface cycle specifying the address of the register (A[11:0]) whose content must be read
- 4. The device launches the contents (D[7:0]) of the selected register on the SDIO pin on SCLK falling edge
- 5. The external controller can capture the contents on the SCLK rising edge

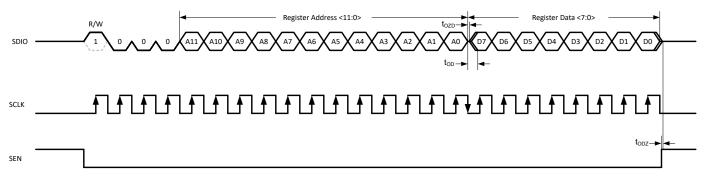


图 8-44. Serial Register Read Timing Diagram

8.6 Register Maps

表 8-12. Register Map Summary

DEGISTED	表 8-12. Register Map Summary								
REGISTER ADDRESS				REGISTE	ER DATA				
A[11:0]	D7	D6	D5	D4	D3	D2	D1	D0	
0x00	0	0	0	0	0	0	0	RESET	
0x07		OP IF MAPPER	₹	0	OP IF EN		OP IF SEL		
0x08	0	0	PDN CLKBUF	PDN REFAMP	0	PDN A	PDN B	PDN GLOBAL	
0x09	0	0	PDN FCLKOUT	PDN DCLKOUT	PDN DA1	PDN DA0	PDN DB1	PDN DB0	
0x0D	0	0	0	0	MASK CLKBUF	MASK REFAMP	MASK BG DIS	0	
0x0E	SYNC PIN EN	SPI SYNC	SPI SYNC EN	0	REF CTRL	REF	SEL	SE CLK EN	
0x11	0	0	SE A	SE B	0	0	0	0	
0x13	0	0	0	0	0	0	0	E-FUSE LD	
0x14				CUSTOM	PAT [7:0]		I.		
0x15				CUSTOM	PAT [15:8]				
0x16		TEST PAT B			TEST PAT A		CUSTOM PAT [17:16]		
0x19	FCLK SRC	0	0	FCLK DIV	0	0	0	TOG FCLK	
0x1A	0	LVDS ½ SWING	0	0	0	0	0	0	
0x1B	MAPPER EN	20B EN	В	IT MAPPER RE	S	0	0	0	
0x1E	0	0	0	0	LVDS D	ATA DEL	LVDS D	CLK DEL	
0x20				FCLK P	AT [7:0]				
0x21				FCLK PA	AT [15:8]				
0x22	0	0	0	0		FCLK PA	AT [19:16]		
0x24	0	0	CH AVG EN	DDC	MUX	DIG BYP	DDC EN	0	
0x25	DDC MUX EN		DECIMATION		REAL OUT	0	0	MIX PHASE	
0x26	MIX G	AIN A	MIX RES A	FS/4 MIX A	MIX G	SAIN B	MIX RES B	FS/4 MIX B	
0x27	0	0	0	OP ORDER A	Q-DEL A	FS/4 MIX PH A	0	0	
0x2A				NCO /	A [7:0]				
0x2B				NCO A	· [15:8]				
0x2C				NCO A	[23:16]				
0x2D				NCO A	[31:24]				
0x2E	0	0	0	OP ORDER B	Q-DEL B	FS/4 MIX PH B	0	0	
0x31				NCO I	B [7:0]	l			
0x32				NCO E					
0x33		NCO B [23:16]							
0x34					[31:24]				
0x390x60				OUTPUT BIT I					
0x610x88				OUTPUT BIT I					
0x8F	0	0	0	0	0	0	FORMAT A	0	
0x92	0	0	0	0	0	0	FORMAT B	0	

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.6.1 Detailed Register Description

图 8-45. Register 0x00

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	RESET
R/W-0							

表 8-13. Register 0x00 Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R/W	0	Must write 0
0	RESET	R/W	0	This bit resets all internal registers to the default values and self clears to 0.

图 8-46. Register 0x07

7	6	5	4	3	2	1	0
OP IF MAPPER		0	OP IF EN		OP IF SEL		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-14. Register 0x07 Field Descriptions

	₹ 0-14. Register 0x07 Freid Descriptions									
Bit	Field	Туре	Reset	Description						
7-5	OP IF MAPPER	R/W	000	Output interface mapper. This register contains the proper output interface bit mapping for the different interfaces. The interface bit mapping is internally loaded from e-fuses and also requires a fuse load command to go into effect (0x13, D0). Register 0x07 along with the E-Fuse Load (0x13, D0) needs to be loaded first in the programming sequence since the E-Fuse load resets the SPI writes. After initial reset the default output interface variant is loaded automatically from fuse internally. However when reading back this register reads 000 until a value is written using SPI. 001: 2-wire, 18 and 14-bit 010: 2-wire, 16-bit 011: 1-wire 100: 0.5-wire others: not used						
4	0	R/W	0	Must write 0						
3	OP IF EN	R/W	0	Enables changing the default output interface mode (D2-D0).						
2-0	OP IF SEL	R/W	000	Selection of the output interface mode. OP IF EN (D3) needs to be enabled also. After initial reset the default output interface is loaded automatically from fuse internally. However when reading back this register reads 000 until a value is written using SPI. 011: 2-wire 100: 1-wire 101: 0.5-wire others: not used						

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

图 8-47. Register 0x08

7	6	5	4	3	2	1	0
0	0	PDN CLKBUF	PDN REFAMP	0	PDN A	PDN B	PDN GLOBAL
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-15. Register 0x08 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	R/W	0	Must write 0
5	PDN CLKBUF	R/W	0	Powers down sampling clock buffer 0: Clock buffer enabled 1: Clock buffer powered down
4	PDN REFAMP	R/W	0	Powers down internal reference gain amplifier 0: REFAMP enabled 1: REFAMP powered down
3	0	R/W	0	Must write 0
2	PDN A	R/W	0	Powers down ADC channel A 0: ADC channel A enabled 1: ADC channel A powered down
1	PDN B	R/W	0	Powers down ADC channel B 0: ADC channel B enabled 1: ADC channel B powered down
0	PDN GLOBAL	R/W	0	Global power down via SPI 0: Global power disabled 1: Global power down enabled. Power down mask (register 0x0D) determines which internal blocks are powered down.

图 8-48. Register 0x09

7	6	5	4	3	2	1	0
0	0	PDN FCLKOUT	PDN DCLKOUT	PDN DA0	PDN DA1	PDN DB0	PDN DB1
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-16. Register 0x09 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	R/W	0	Must write 0
5	PDN FCLKOUT	R/W	0	Powers down frame clock (FCLK) LVDS output buffer 0: FCLK output buffer enabled 1: FCLK output buffer powered down
4	PDN DCLKOUT	R/W	0	Powers down DCLK LVDS output buffer 0: DCLK output buffer enabled 1: DCLK output buffer powered down
3	PDN DA1	R/W	0	Powers down LVDS output buffer for channel A, lane 1. NOT powered down automatically in 1-wire and 1/2-wire mode. 0: DA1 LVDS output buffer enabled 1: DA1 LVDS output buffer powered down
2	PDN DA0	R/W	0	Powers down LVDS output buffer for channel A, lane 0. 0: DA0 LVDS output buffer enabled 1: DA0 LVDS output buffer powered down
1	PDN DB1	R/W	0	Powers down LVDS output buffer for channel B, lane 1. NOT powered down automatically in 1-wire and 1/2-wire mode. 0: DB1 LVDS output buffer enabled 1: DB1 LVDS output buffer powered down
0	PDN DB0	R/W	0	Powers down LVDS output buffer for channel B, lane 0. NOT powered down automatically in 1/2-wire mode. 0: DB0 LVDS output buffer enabled 1: DB0 LVDS output buffer powered down

Product Folder Links: ADC3664

www.ti.com.cn

图 8-49. Register 0x0D (PDN GLOBAL MASK)

7	6	5	4	3	2	1	0
0	0	0	0	MASK CLKBUF	MASK REFAMP	MASK BG DIS	0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-17. Register 0x0D Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R/W	0	Must write 0
3	MASK CLKBUF	R/W	0	Global power down mask control for sampling clock input buffer. 0: Clock buffer will get powered down when global power down is exercised. 1: Clock buffer will NOT get powered down when global power down is exercised.
2	MASK REFAMP	R/W	0	Global power down mask control for reference amplifier. 0: Reference amplifier will get powered down when global power down is exercised. 1: Reference amplifier will NOT get powered down when global power down is exercised.
1	MASK BG DIS	R/W	0	Global power down mask control for internal 1.2V bandgap voltage reference. Setting this bit reduces power consumption in global power down mode but increases the wake up time. See the power down option overview. 0: Internal 1.2V bandgap voltage reference will NOT get powered down when global power down is exercised. 1: Internal 1.2V bandgap voltage reference will get powered down when global power down is exercised.
0	0	R/W	0	Must write 0

图 8-50. Register 0x0E

7	6	5	4	3	2	1	0
SYNC PIN EN	SPI SYNC	SPI SYNC EN	0	REF CTL	REF	SEL	SE CLK EN
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-18. Register 0x0E Field Descriptions

Bit	Field	Туре	Reset	Description
7	SYNC PIN EN	R/W	0	This bit controls the functionality of the SYNC/PDN pin. 0: SYNC/PDN pin exercises global power down mode when pin is pulled high. 1: SYNC/PDN pin issues the SYNC command when pin is pulled high.
6	SPI SYNC	R/W	0	Toggling this bit issues the SYNC command using the SPI register write. SYNC using SPI must be enabled as well (D5). This bit doesn't self reset to 0. 0: Normal operation 1: SYNC command issued.
5	SPI SYNC EN	R/W	0	This bit enables synchronization using SPI instead of the SYNC/PDN pin. 0: Synchronization using SPI register bit disabled. 1: Synchronization using SPI register bit enabled.
4	0	R/W	0	Must write 0
3	REF CTL	R/W	0	This bit determines if the REFBUF pin controls the voltage reference selection or the SPI register (D2-D1). 0: The REFBUF pin selects the voltage reference option. 1: Voltage reference is selected using SPI (D2-D1) and single ended clock using D0.
2-1	REF SEL	R/W	00	Selects of the voltage reference option. REF CTRL (D3) must be set to 1. 00: Internal reference 01: External voltage reference (1.2V) using internal reference buffer (REFBUF) 10: External voltage reference 11: not used
0	SE CLK EN	R/W	0	Selects single ended clock input and powers down the differential sampling clock input buffer. REF CRTL (D3) must be set to 1. 0: Differential clock input 1: Single ended clock input

图 8-51. Register 0x11

			• •	0			
7	6	5	4	3	2	1	0
0	0	SE A	SE B	0	0	0	0
R/W-0							

表 8-19. Register 0x11 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	R/W	0	Must write 0
5	SE A	R/W	0	This bit enables single ended analog input, channel A. In this mode the SNR is reduced by 3-dB. 0: Differential input 1: Single ended input
4	SE B	R/W	0	This bit enables single ended analog input, channel B. In this mode the SNR is reduced by 3-dB. 0: Differential input 1: Single ended input
3-0	0	R/W	0	Must write 0

Product Folder Links: ADC3664

INSTRUMENTS www.ti.com.cn

图 8-52. Register 0x13

7	6	5	4	3	2	1	0
0	0	0	0	0	0		E-FUSE LD
R/W-0							

表 8-20. Register 0x13 Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R/W	0	Must write 0
0	E-FUSE LD	R/W		This register bit loads the internal bit mapping for different interfaces. After setting the interface in register 0x07, this E-FUSE LD bit needs to be set to 1 and reset to 0 for loading to go into effect. Register 0x07 along with the E-Fuse Load (0x13, D0) needs to be loaded first in the programming sequence since the E-Fuse load resets the SPI writes. 0: E-FUSE LOAD set 1: E-FUSE LOAD reset

图 8-53. Register 0x14/15/16

		· ·						
7	6	5	4 3 2 1 0				0	
CUSTOM PAT [7:0]								
	CUSTOM PAT [15:8]							
	TEST PAT B TEST PAT A CUSTOM PAT [17:16]							
R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0					

表 8-21. Register 0x14/15/16 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CUSTOM PAT [17:0]	R/W	00000000	This register is used for two purposes: It sets the constant custom pattern starting from MSB It sets the RAMP pattern increment step size. 00001: Ramp pattern for 18-bit ADC 00100: Ramp pattern for 16-bit ADC 10000: Ramp pattern for 14-bit ADC
7-5	TEST PAT B	R/W	000	Enables test pattern output mode for channel B (NOTE: The test pattern is set prior to the bit mapper and is based on native resolution of the ADC starting from the MSB). These work in either output format. 000: Normal output mode (test pattern output disabled) 010: Ramp pattern: need to set proper increment using CUSTOM PAT register 011: Constant Pattern using CUSTOM PAT [17:0] in register 0x14/15/16. others: not used
4-2	TEST PAT A	R/W	000	Enables test pattern output mode for channel A (NOTE: The test pattern is set prior to the bit mapper and is based on native resolution of the ADC starting from the MSB). These work in either output format. 000: Normal output mode (test pattern output disabled) 010: Ramp pattern: need to set proper increment using CUSTOM PAT register 011: Constant Pattern using CUSTOM PAT [17:0] in register 0x14/15/16. others: not used

图 8-54. Register 0x19

7	6	5	4	3	2	1	0
FCLK SRC	0	0	FCLK DIV	0	0	0	TOG FCLK
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-22. Register 0x19 Field Descriptions

Bit	Field	Туре	Reset	Description
7	FCLK SRC	R/W	0	User has to select if FCLK signal comes from ADC or from DDC block. Here real decimation is treated same as bypass mode 0: FCLK generated from ADC. FCLK SRC set to 0 for DDC bypass, real decimation mode and 1/2-w complex decimation mode. 1: FCLK generated from DDC block. In complex decimation mode only this bit needs to be set for 2-w and 1-w output interface mode but NOT for 1/2-w mode.
6-5	0	R/W	0	Must write 0
4	FCLK DIV	R/W	0	This bit needs to be set to 1 for 2-w output mode in bypass mode only (non decimation). 0: All output interface modes except 2-w bypass mode 1: 2-w output interface mode.
3-1	0	R/W	0	Must write 0
0	TOG FCLK	R/W	0	This bit adjusts the FCLK signal appropriately for 1/2-wire mode where FCLK is stretched to cover channel A and channel B. This bit ONLY needs to be set in 1/2-wire mode with complex decimation mode. 0: all other modes. 1: FCLK for 1/2-wire complex decimation mode.

表 8-23. Configuration of FCLK SRC and FCLK DIV Register Bits vs Serial Interface

BYPASS/DECIMATION	SERIAL INTERFACE	FCLK SRC	FCLK DIV	TOG FCLK
	2-wire	0	1	0
Decimation Bypass/ Real Decimation	1-wire	0	0	0
	1/2-wire	0	0	0
	2-wire	1	0	0
Complex Decimation	1-wire	1	0	0
	1/2-wire	0	0	1

Product Folder Links: ADC3664

www.ti.com.cn

图 8-55. Register 0x1A

7	6	5	4	3	2	1	0
0	LVDS ½ SWING	0	0	0	0	0	0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-24. Register 0x1A Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	R/W	0	Must write 0
6	LVDS 1/2 SWING	R/W	0	This bit reduces the LVDS output current from 3.5mA to 1.75mA which reduces power consumption.
5-0	0	R/W	0	Must write 0

图 8-56. Register 0x1B

7	6	5	5 4		2	1	0
MAPPER EN	20B EN	E	BIT MAPPER RES	3	0	0	0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-25. Register 0x1B Field Descriptions

Bit	Field	Туре	Reset	Description
7	MAPPER EN	R/W	0	This bit enables changing the resolution of the output (including output serialization factor) in bypass mode only. This bit is not needed for 20-bit resolution output. 0: Output bit mapper disabled. 1: Output bit mapper enabled.
6	20B EN	R/W	0	This bit enables 20-bit output resolution which can be useful for very high decimation settings so that quantization noise doesn't impact the ADC performance. 0: 20-bit output resolution disabled. 1: 20-bit output resolution enabled.
5-3	BIT MAPPER RES	R/W	000	Sets the output resolution using the bit mapper. MAPPER EN bit (D6) needs to be enabled when operating in bypass mode 000: 18 bit 001: 16 bit 010: 14 bit all others, n/a
2-0	0	R/W	0	Must write 0

表 8-26. Register Settings for Output Bit Mapper vs Operating Mode

BYPASS/DECIMATION	OUTPUT RESOLUTION	MAPPER EN (D7)	BIT MAPPER RES (D5-D3)
Decimation Bypass	Resolution Change	1	000: 18-bit
Real Decimation	Resolution Change (default 18-bit)	0	001: 16-bit
Complex Decimation	Resolution Change (detault 10-bit)	0	010: 14-bit

图 8-57. Register 0x1E

7	6	5	4	3	2	1	0
0	0	0	0	LVDS D	ATA DEL	LVDS DO	CLK DEL
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-27. Register 0x1E Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R/W	0	Must write 0

表 8-27. Register 0x1E Field Descriptions (continued)

pro = 11 togistor ox 1 = 1 tota = 0001.priono (0011111111111111111111111111111111111									
Bit	Field	Туре	Reset	Description					
3-2	LVDS DATA DEL	R/W	00	These bits adjust the output timing of the SLVDS output data. 00: no delay 01: Data advanced by 50 ps 10: Data delayed by 50 ps 11: Data delayed by 100 ps					
1-0	LVDS DCLK DEL	R/W	00	These bits adjust the output timing of the SLVDS DCLK output. 00: no delay 01: DCLK advanced by 50 ps 10: DCLK delayed by 50 ps 11: DCLK delayed by 100 ps					

图 8-58. Register 0x20/21/22

7	6	5	4	4 3 2 1 0			0				
	FCLK PAT [7:0]										
			FCLK PA	AT [15:8]							
0	0 0 0 0 FCLK PAT [19:16]										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0							

表 8-28. Register 0x20/21/22 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	FCLK PAT [19:0]	R/W	0xFFC00	These bits can adjust the duty cycle of the FCLK. In decimation bypass mode the FCLK pattern gets adjusted automatically for the different output resolutions. 表 8-29 shows the proper FCLK pattern values for 1-wire and 1/2-wire in real/complex decimation.

表 8-29. FCLK Pattern for different resolution based on interface

DECIMATION	OUTPUT RESOLUTION	2-WIRE	1-WIRE	1/2-WIRE	
	14-bit		0xFE000		
REAL DECIMATION	16-bit		0xFF000	l las Dafault	
REAL DECIMATION	18-bit		0xFF800	- Use Default	
	20-bit	Use Default	0xFFC00		
	14-bit	Ose Delault			
COMPLEX	16-bit		0xFFFFF	0,45555	
DECIMATION	18-bit		UXFFFF	0xFFFFF	
	20-bit				

Product Folder Links: ADC3664

图 8-59. Register 0x24

7	6	5	4	3	2	1	0
0	0	CH AVG EN	DDC	MUX	DIG BYP	DDC EN	0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-30. Register 0x24 Field Descriptions

	₹ 0 00. Register 0x24 Field Descriptions									
Bit	Field	Туре	Reset	Description						
7-6	0	R/W	0	Must write 0						
5	CH AVG EN	R/W	0	Averages the output of ADC channel A and channel B together. The DDC MUX has to be enabled and set to '11'. The decimation filter needs to be enabled and set to bypass (fullrate output) or decimation and DIG BYP set to 1. 0: Channel averaging feature disabled 1: Output of channel A and channel B are averaged: (A+B)/2.						
4-3	DDC MUX	R/W	0	Configures DDC MUX in front of the decimation filter. 00: ADC channel A connected to DDC A; ADC Channel B connected to DDC B 01: ADC channel A connected to DDC A and DDC B. 10: ADC channel B connected to DDC A and DDC B. 11: Output of ADC averaging block (see CH AVG EN) given to DDC A and DDC B.						
2	DIG BYP	R/W	0	This bit needs to be set to enable digital features block which includes decimation. 0: Digital feature block bypassed - lowest latency 1: Data path includes digital features						
1	DDC EN	R/W	0	Enables internal decimation filter for both channels 0: DDC disabled. 1: DDC enabled.						
0	0	R/W	0	Must write 0						

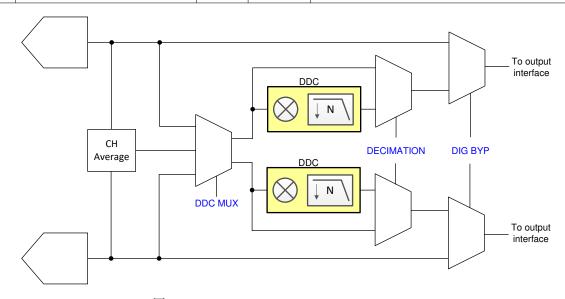


图 8-60. Register control for digital features

图 8-61. Register 0x25

7	6	5	4	3	2	1	0
DDC MUX EN		DECIMATION		REAL OUT	0	0	MIX PHASE
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-31. Register 0x25 Field Descriptions

Bit	Field	Туре	Reset	Description		
7	DDC MUX EN	R/W	0	Enables the digital mux between ADCs and decimation filters. This bit is required for DDC mux settings in register 0x24 (D4, D3) to go into effect. 0: DDC mux disabled 1: DDC mux enabled		
6-4	DECIMATION	R/W	000	Complex decimation setting. This applies to both channels. 000: Bypass mode (no decimation) 001: Decimation by 2 010: Decimation by 4 011: Decimation by 8 100: Decimation by 16 101: Decimation by 32 others: not used		
3	REAL OUT	R/W	0	This bit selects real output decimation. This mode applies to both channels. In this mode, the decimation filter is a low pass filter and no complex mixing is performed to reduce power consumption. For maximum power savings the NCO in this case should be set to 0. 0: Complex decimation 1: Real decimation		
2-1	0	R/W	0	Must write 0		
0	MIX PHASE	R/W	0	This bit used to invert the NCO phase 0: NCO phase as is. 1: NCO phase inverted.		

图 8-62. Register 0x26

7	6	5	4	3	2	1	0
MIX G	AIN A	MIX RES A	FS/4 MIX A	MIX G	AIN B	MIX RES B	FS/4 MIX B
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-32. Register 0x26 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	MIX GAIN A	R/W	00	This bit applies a 0, 3 or 6-dB digital gain to the output of digital mixer to compensate for the mixing loss for channel A. 00: no digital gain added 01: 3-dB digital gain added 10: 6-dB digital gain added 11: not used
5	MIX RES A	R/W	0	Toggling this bit resets the NCO phase of channel A and loads the new NCO frequency. This bit does not self reset.
4	FS/4 MIX A	R/W	0	Enables FS/4 mixing for DDC A (complex decimation only). 0: FS/4 mixing disabled. 1: FS/4 mixing enabled.
3-2	MIX GAIN B	R/W	00	This bit applies a 0, 3 or 6-dB digital gain to the output of digital mixer to compensate for the mixing loss for channel B. 00: no digital gain added 01: 3-dB digital gain added 10: 6-dB digital gain added 11: not used
1	MIX RES B	R/W	0	Toggling this bit resets the NCO phase of channel B and loads the new NCO frequency. This bit does not self reset.

Submit Document Feedback

表 8-32. Register 0x26 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	FS/4 MIX B	R/W		Enables FS/4 mixing for DDC B (complex decimation only). 0: FS/4 mixing disabled. 1: FS/4 mixing enabled.

图 8-63. Register 0x27

7	6	5	4	3	2	1	0				
0	0	0	OP ORDER A	Q-DEL A	FS/4 MIX PH A	0	0				
	DDC OFFSET A [9:2]										
0	0 DDC OFFSET A [16:10]										
R/W-0	R/W-0										

表 8-33. Register 0x27 Field Descriptions

Bit	Field	Туре	Reset	Description			
7-5	0	R/W	0	Must write 0			
4	OP ORDER A	R/W 0 Swaps the I and Q output order for channel A 0: Output order is I[n], Q[n] 1: Output order is swapped: Q[n], I[n]					
3	Q-DEL A	R/W	0	This delays the Q-sample output of channel A by one. 0: Output order is I[n], Q[n] 1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]			
2	FS/4 MIX PH A	R/W	0	Inverts the mixer phase for channel A when using FS/4 mixer 0: Mixer phase is non-inverted 1: Mixer phase is inverted			
1-0	0	R/W	0	Must write 0			

图 8-64. Register 0x2A/B/C/D

7	7 6 5		4	3	2	1	0				
	NCO A [7:0]										
	NCO A [15:8]										
			NCO A	[23:16]							
	NCO A [31:24]										
R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0										

表 8-34. Register 0x2A/2B/2C/2D Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	NCO A [31:0]	R/W		Sets the 32 bit NCO value for decimation filter channel A. The NCO value is $f_{NCO} \times 2^{32}/FS$ In real decimation mode these registers are automatically set to 0.

Copyright © 2022 Texas Instruments Incorporated

图 8-65. Register 0x2E

7	6	5	4	3	2	1	0
0	0	0	OP ORDER B	Q-DEL B	FS/4 MIX PH B	0	0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 8-35. Register 0x2E Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	R/W	0	Must write 0
4	OP ORDER B	R/W	0	Swaps the I and Q output order for channel B 0: Output order is I[n], Q[n] 1: Output order is swapped: Q[n], I[n]
3	Q-DEL B	R/W	0	This delays the Q-sample output of channel B by one. 0: Output order is I[n], Q[n] 1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]
2	FS/4 MIX PH B	R/W	0	Inverts the mixer phase for channel B when using FS/4 mixer 0: Mixer phase is non-inverted 1: Mixer phase is inverted
1-0	0	R/W	0	Must write 0

图 8-66. Register 0x31/32/33/34

7	7 6 5		4	3	2	1	0				
	NCO B [7:0]										
NCO B [15:8]											
			NCO B	[23:16]							
NCO B [31:24]											
R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0										

表 8-36. Register 0x31/32/33/34 Field Descriptions

Bit	Field	Туре	Reset	Description		
7-0	NCO B [31:0]	R/W		Sets the 32 bit NCO value for decimation filter channel B. The NCO value is $f_{NCO} \times 2^{32}/FS$ In real decimation mode these registers are automatically set to 0.		

图 8-67. Register 0x39..0x60

7 6 5 4 3 2 1 0											
OUTPUT BIT MAPPER CHA											
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0											

表 8-37. Register 0x39..0x60 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUTPUT BIT MAPPER CHA	R/W	0	These registers are used to reorder the output data bus. See the
				节 8.3.5.2 on how to program it.

Product Folder Links: ADC3664

www.ti.com.cn

图 8-68. Register 0x61..0x88

7	6	5	4	3	2	1	0				
	OUTPUT BIT MAPPER CHB										
R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0										

表 8-38. Register 0x61..0x88 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUTPUT BIT MAPPER CHB	R/W	0	These registers are used to reorder the output data bus of
				channel B. See the 节 8.3.5.2 on how to program it.

图 8-69. Register 0x8F

7	6	5	4	3	2	1	0
0	0	0	0	0	0	FORMAT A	0
R/W-0	R/W-0						

表 8-39. Register 0x8F Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	R/W	0	Must write 0
1	FORMAT A	R/W		This bit sets the output data format for channel A. Digital bypass register bit (0x24, D2) needs to be enabled as well. 0: 2s complement 1: Offset binary
0	0	R/W	0	Must write 0

图 8-70. Register 0x92

			• •	<u> </u>				
7	6	5	4	3	2	1	0	
0	0	0	0	0	0	FORMAT B		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

表 8-40. Register 0x92 Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	R/W	0	Must write 0
1	FORMAT B	R/W	0	This bit sets the output data format for channel B. Digital bypass register bit (0x24, D2) needs to be enabled as well. 0: 2s complement 1: Offset binary
0	0	R/W	0	Must write 0

9 Application Information Disclaimer

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Typical Application

A spectrum analyzer is a typical frequency domain application for the ADC3664 and its front end circuitry is very similar to several other systems such as software defined radio (SDR), sonar, radar or communications. Some applications require frequency coverage including DC or near DC (such as: sonar) so it is included in this example.

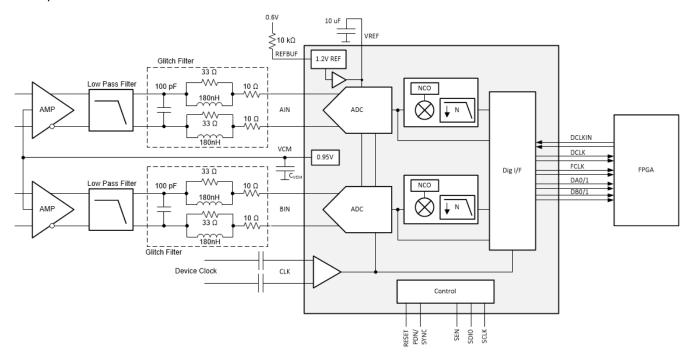


图 9-1. Typical configuration for a spectrum analyzer with DC support

9.1.1 Design Requirements

Frequency domain applications cover a wide range of frequencies from low input frequencies at or near DC in the 1st Nyquist zone to undersampling in higher Nyquist zones. If very low input frequency is supported then the input has to be DC coupled and the ADC driven by a fully differential amplifier (FDA). If low frequency support is not needed then AC coupling and use of a balun may be more suitable.

The internal reference is used since DC precision is not needed. However the ADC AC performance is highly dependent on the quality of the external clock source. If in-band interferers can be present then the ADC SFDR performance will be a key care about as well. A higher ADC sampling rate is desirable in order to relax the external anti-aliasing filter – an internal decimation filter can be used to reduce the digital output rate afterwards.

表 9-1. Design key care-abouts

FEATURE	DESCRIPTION
Signal Bandwidth	DC to 30 MHz
Input Driver	Single ended to differential signal conversion and DC coupling
Clock Source	External clock with low jitter

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

When designing the amplifier/filter driving circuit, the ADC input full-scale voltage needs to be taken into consideration. For example, the ADC3664 input full-scale is 3.2Vpp. When factoring in ~ 1 dB for insertion loss of the filter, then the amplifier needs to deliver close to 3.6Vpp. The amplifier distortion performance will degrade with a larger output swing and considering the ADC common mode input voltage the amplifier may not be able to deliver the full swing. The ADC3664 provides an output common mode voltage of 0.95V and the THS4541 for example can only swing within 250 mV of its negative supply. A unipolar 3.3 V amplifier power supply will thus limit the maximum voltage swing to ~ 2.8Vpp. Hence if a larger output swing is required (factoring in filter insertion loss) then a negative supply for the amplifier is needed in order to eliminate that limitation. Additionally input voltage protection diodes may be needed to protect the ADC from over-voltage events.

表 9-2. Output voltage swing of THS4541 vs power supply

DEVICE	MIN OUTPUT VOLTAGE	MAX SWING WITH 3.3 V/ 0 V SUPPLY	MAX SWING WITH 3.3 V/ -1.0 V SUPPLY		
THS4541	VS- + 250 mV	2.8 Vpp	6.8 Vpp		

9.1.2 Detailed Design Procedure

9.1.2.1 Input Signal Path

The THS4541 provides a very good low power option to drive the ADC inputs. 表 9-3 provides an overview of the THS4541 with power consumption and usable frequency.

表 9-3. Fully Differential Amplifier Options

DEVICE	CURRENT (IQ) PER CHANNEL	USABLE FREQUENCY RANGE
THS4541	10 mA	< 70 MHz

The low pass filter design (topology, filter order) is driven by the application itself. However, when designing the low pass filter, the optimum load impedance for the amplifier should be taken into consideration as well. Between the low pass filter and the ADC input the sampling glitch filter needs to added as well as shown in \ddagger 8.3.1.2.1. In this example the DC - 30 MHz glitch filter is selected.

9.1.2.2 Sampling Clock

Applications operating with low input frequencies (such as DC to 30 MHz) typically are less sensitive to performance degradation due to clock jitter. The internal ADC aperture jitter improves with faster rise and fall times (i.e. square wave vs sine wave). 表 9-4 provides an overview of the estimated SNR performance of the ADC3664 based on different amounts of jitter of the external clock source. The SNR is estimated based on ADC3664 thermal noise of 77.5 dBFS and input signal at -1dBFS.

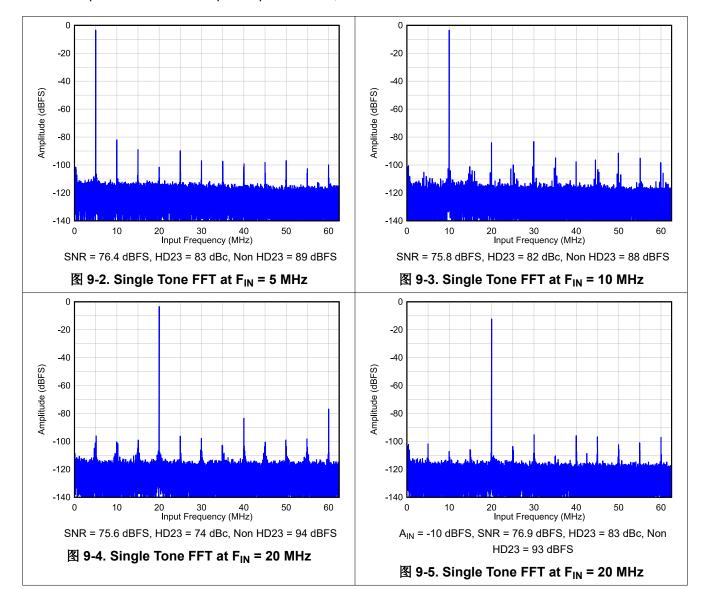
表 9-4. ADC SNR performance across vs input frequency for different amounts of external clock jitter

INPUT FREQUENCY	T _{J,EXT} = 100 fs	T _{J,EXT} = 250 fs	$T_{J,EXT} = 500 \text{ fs}$	T _{J,EXT} = 1 ps
10 MHz	77.4	77.4	77.3	76.8
20 MHz	77.3	77.2	76.7	75.1
30 MHz	77.1	76.8	75.8	73.2

Termination of the clock input should be considered for long clock traces.

9.1.2.3 Voltage Reference

The ADC3664 is configured to internal reference operation by applying 0.6 V to the REFBUF pin.


Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

9.1.3 Application Curves

The following FFT plots show the performance of THS4541 driving the ADC3664 operated at 125 MSPS with a full-scale input at -1 dBFS with input frequencies at 5, 10 and 20 MHz.

9.2 Initialization Set Up

After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a high pulse on the RESET pin, as shown in § 9-6.

- 1. Apply AVDD and IOVDD (no specific sequence required). After AVDD is applied the internal bandgap reference will power up and settle out in ~ 2ms.
- 2. Configure REFBUF pin (pull high or low even if configured via SPI later on) and apply the sampling clock.
- 3. Apply hardware reset. After hardware reset is released, the default registers are loaded from internal fuses and the internal power up capacitor calibration is initiated. The calibration takes approximately 200000 clock cycles.
- 4. Begin programming using SPI interface.

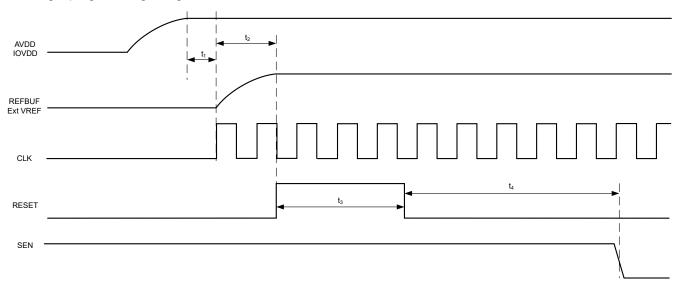


图 9-6. Initialization of serial registers after power up

表 9-5	5. Power-u	p timing
-------	------------	----------

		MIN	TYP	MAX	UNIT
t ₁	Power-on delay: delay from power up to logic level of REFBUF pin	2			ms
t ₂	Delay from REFBUF pin logic level to RESET rising edge	100			ns
t ₃	RESET pulse width	1			us
t ₄	Delay from RESET disable to SEN active	~ 200000			clock cycles

9.2.1 Register Initialization During Operation

If required, the serial interface registers can be cleared and reset to default settings during operation either:

- through a hardware reset or
- by applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 0x00) high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.

After hardware or software reset the wait time is also ~ 200000 clock cycles before the SPI registers can be programmed.

9.3 Power Supply Recommendations

The ADC3664 requires two different power-supplies. The AVDD rail provides power for the internal analog circuits and the ADC itself while the IOVDD rail powers the digital interface and the internal digital circuits like decimation filter or output interface mapper. Power sequencing is not required.

The AVDD power supply must be low noise in order to achieve data sheet performance. In applications operating near DC, the 1/f noise contribution of the power supply needs to be considered as well. The ADC is designed for very good PSRR which aides with the power supply filter design.

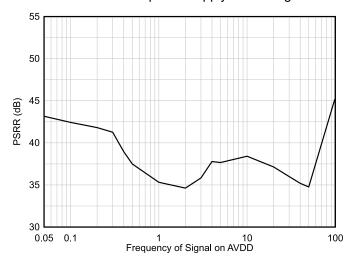


图 9-7. Power supply rejection ratio (PSRR) vs frequency

There are two recommended power-supply architectures:

- 1. Step down using high-efficiency switching converters, followed by a second stage of regulation using a low noise LDO to provide switching noise reduction and improved voltage accuracy.
- 2. Directly step down the final ADC supply voltage using high-efficiency switching converters. This approach provides the best efficiency, but care must be taken to ensure switching noise is minimized to prevent degraded ADC performance.

TI WEBENCH® Power Designer can be used to select and design the individual power-supply elements needed: see the WEBENCH® Power Designer

Recommended switching regulators for the first stage include the TPS62821, and similar devices.

Recommended low dropout (LDO) linear regulators include the TPS7A4701, TPS7A90, LP5901, and similar devices.

For the switch regulator only approach, the ripple filter must be designed with a notch frequency that aligns with the switching ripple frequency of the DC/DC converter. Note the switching frequency reported from WEBENCH® and design the EMI filter and capacitor combination to have the notch frequency centered as needed.

9-8 and 9-9 illustrate the two approaches.

AVDD and IOVDD supply voltages should not be shared in order to prevent digital switching noise from coupling into the analog signal chain.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

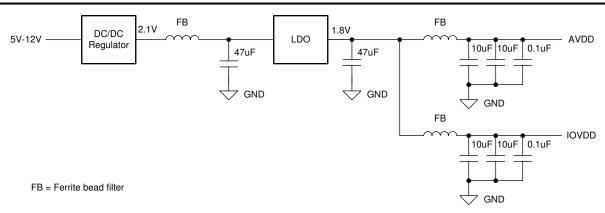


图 9-8. Example: LDO Linear Regulator Approach

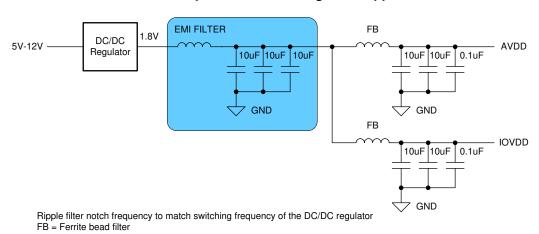


图 9-9. Example Switcher-Only Approach

9.4 Layout

9.4.1 Layout Guidelines

There are several critical signals which require specific care during board design:

- 1. Analog input and clock signals
 - Traces should be as short as possible and vias should be avoided where possible to minimize impedance discontinuities.
 - Traces should be routed using loosely coupled 100- Ω differential traces.
 - Differential trace lengths should be matched as close as possible to minimize phase imbalance and HD2 degradation.
- 2. Digital output interface
 - Traces should be routed using tightly coupled 100-Ω differential traces.
- 3. Voltage reference
 - The bypass capacitor should be placed as close to the device pins as possible and connected between VREF and REFGND on top layer avoiding vias.
 - Depending on configuration an additional bypass capacitor between REFBUF and REFGND may be recommended and should also be placed as close to pins as possible on top layer.
- 4. Power and ground connections
 - Provide low resistance connection paths to all power and ground pins.
 - Use power and ground planes instead of traces.
 - · Avoid narrow, isolated paths which increase the connection resistance.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

• Use a signal/ground/power circuit board stackup to maximize coupling between the ground and power plane.

9.4.2 Layout Example

The following screen shot shows the top layer of the ADC366x EVM.

- Signal and clock inputs are routed as differential signals on the top layer avoiding vias.
- SLVDS output interface lanes are routed differential and length matched
- Bypass caps are close to the VREF pin on the top layer avoiding vias.

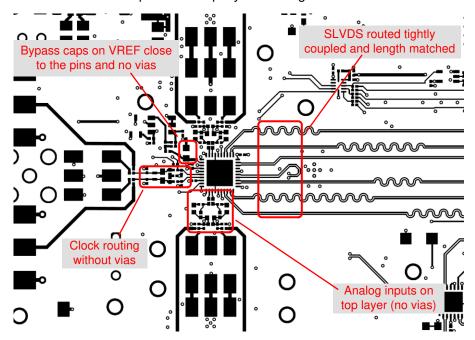


图 9-10. Layout example: top layer of ADC366x EVM

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

10 Device and Documentation Support

10.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
ADC3664IRSBR	Active	Production	WQFN (RSB) 40	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	AZ3664
ADC3664IRSBR.A	Active	Production	WQFN (RSB) 40	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	AZ3664
ADC3664IRSBT	Active	Production	WQFN (RSB) 40	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	AZ3664
ADC3664IRSBT.A	Active	Production	WQFN (RSB) 40	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	AZ3664

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ADC3664:

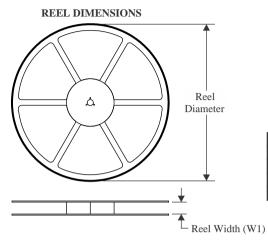
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

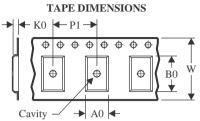
PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025

● Enhanced Product : ADC3664-EP

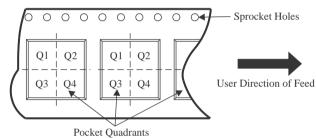
• Space : ADC3664-SP


NOTE: Qualified Version Definitions:

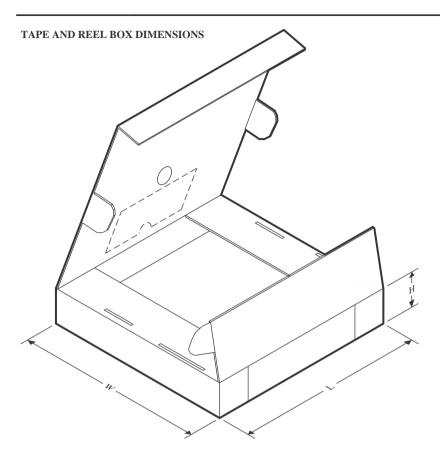

- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Aug-2025

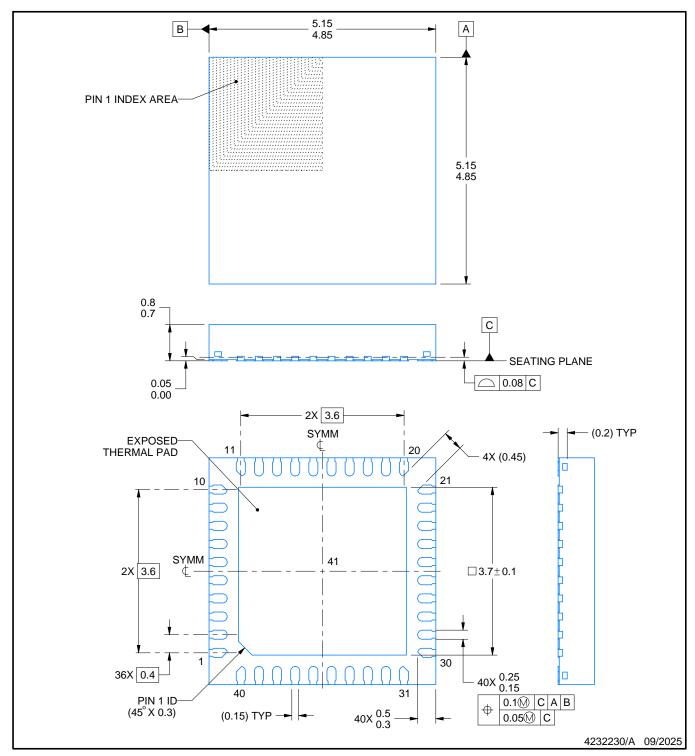

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

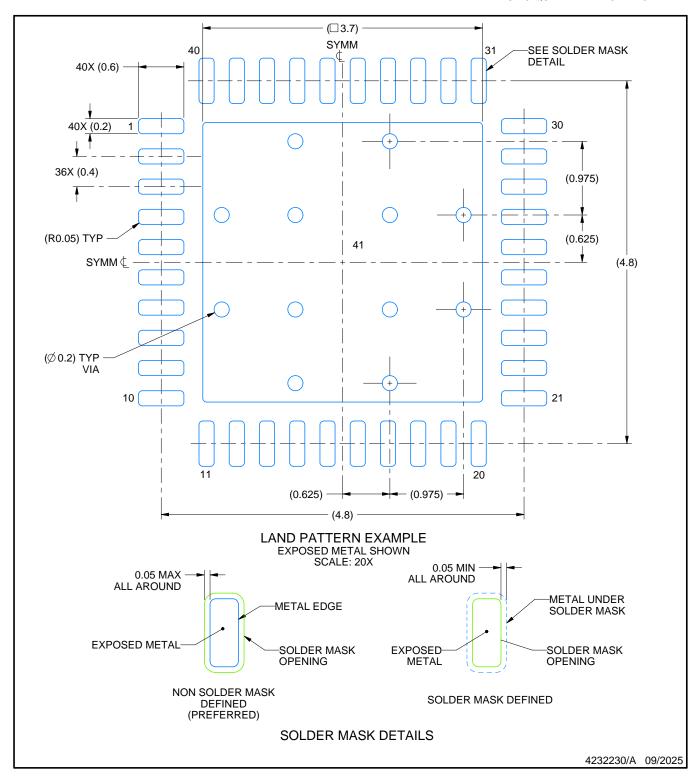
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADC3664IRSBR	WQFN	RSB	40	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADC3664IRSBT	WQFN	RSB	40	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2


www.ti.com 12-Aug-2025

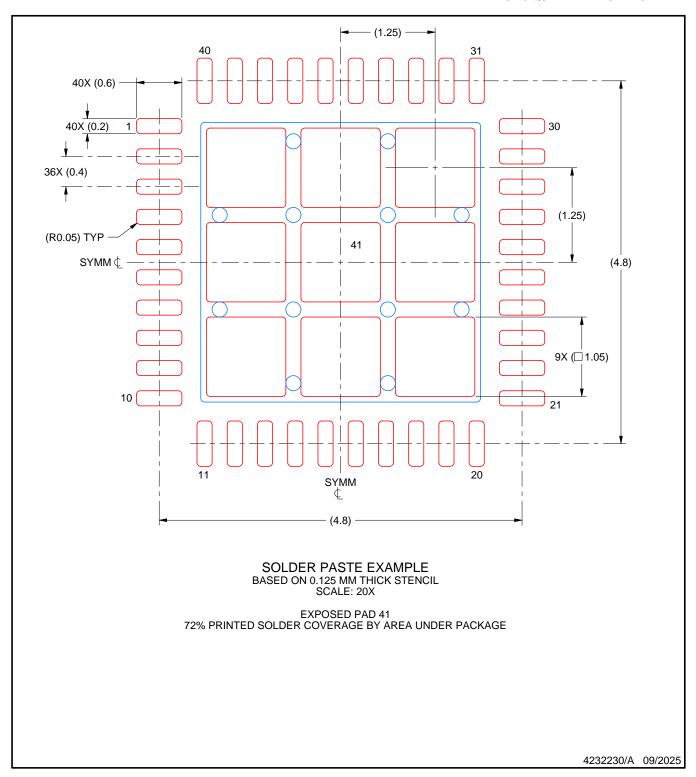
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADC3664IRSBR	WQFN	RSB	40	3000	350.0	350.0	43.0
ADC3664IRSBT	WQFN	RSB	40	250	210.0	185.0	35.0



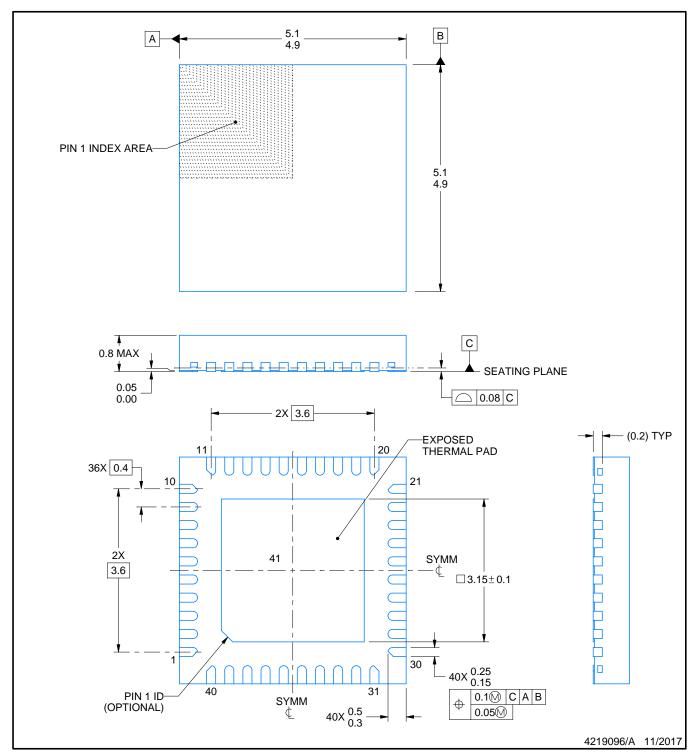
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



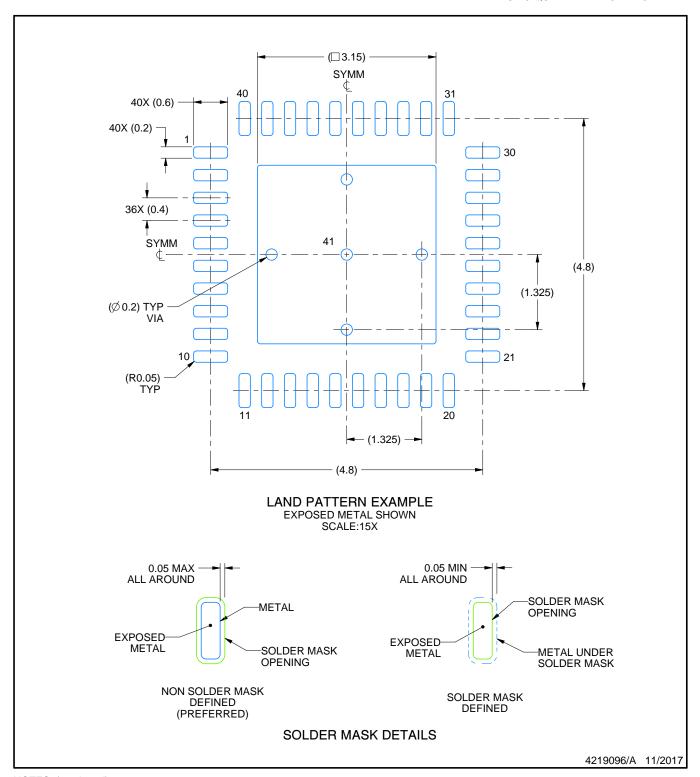
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



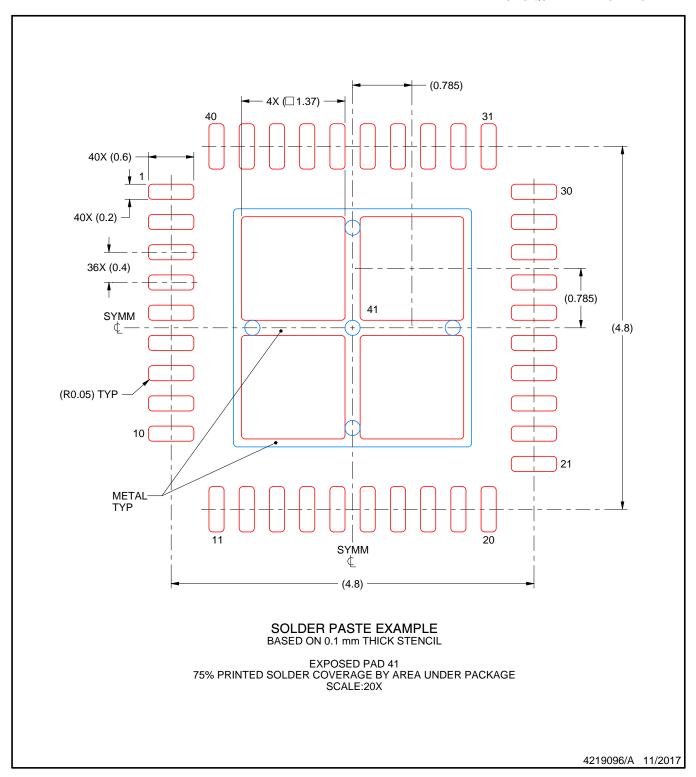
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



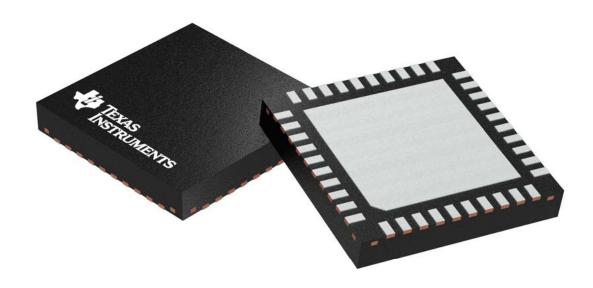
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



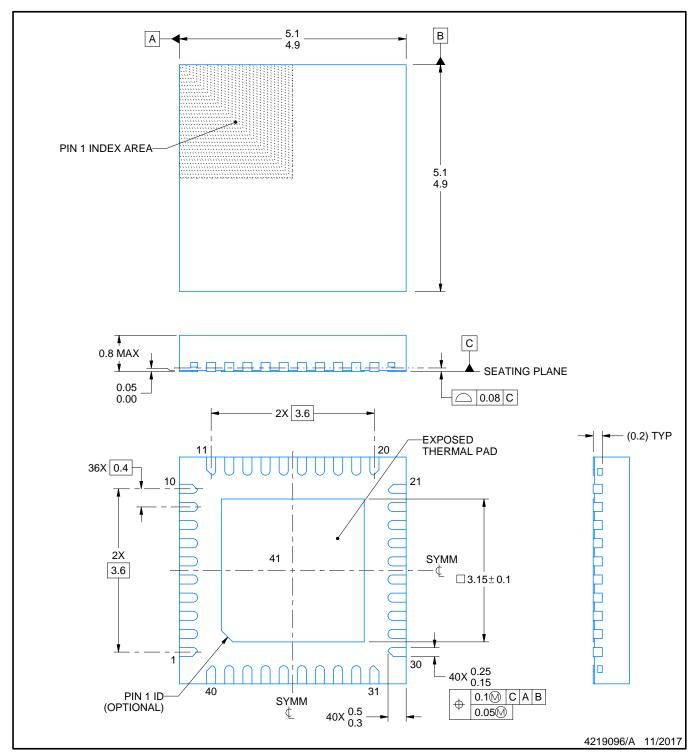
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



NOTES: (continued)

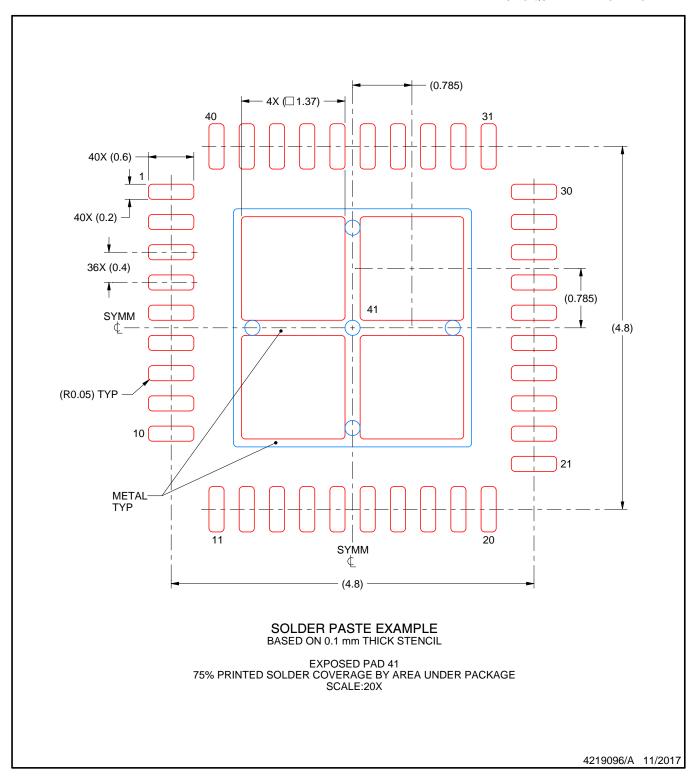
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


5 x 5 mm, 0.4 mm pitch

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月