

ZHCSGR4-SEPTEMBER 2017

ADC32RF82 双通道、2457.6MSPS 电信接收器和反馈器件

特性 1

- 14 位双通道 2457.6MSPS ADC
- 本底噪声: -154.1dBFS/Hz

INSTRUMENTS

- 射频 (RF) 输入支持的频率最高可达 4.0GHz
- 孔径抖动: 90fs

TEXAS

- 通道隔离: f_{IN} = 1.8GHz 时为 95dB
- 频谱性能(f_{IN} = 900MHz, -2dBFS):
 - SNR: 61.2dBFS
 - SFDR: 67dBc (HD2、HD3)
 - SFDR: 81dBc(最严重毛刺)
- 频谱性能(f_{IN} = 1.85GHz, -2dBFS):
 - SNR: 58.7dBFS
 - SFDR: 71dBc (HD2、HD3)
 - SFDR: 76dBc (最严重毛刺)
- 片上数字下变频器:
 - 最多4个下变频器 (DDC) (双频带模式)
 - 每个 DDC 最多配有 3 个独立数控振荡器 (NCO)
- 提供过压保护的片上输入钳位
- 带有报警引脚的可编程片上功率检测器,支持自动 增益控制 (AGC)
- 片上抖动 •
- 片上输入端接电阻
- 输入满量程: 1.35 VPP
- 支持多芯片同步 •
- JESD204B 接口:
 - 基于子类1的确定性延迟
 - 12.5Gbps 时每条通道具有 4 条信道
- 功耗: 2457.6MSPS 时为 3.0W/通道
- 72 引脚超薄型四方扁平无引线 (VQFN) 封装 • $(10 \text{mm} \times 10 \text{mm})$
- 2 应用
- 多载波 GSM 蜂窝基础设施基站
- 电信接收器
- 数字预失真 (DPD) 观测接收器
- 回程接收器
- 射频中继器和分布式天线系统

3 说明

ADC32RF82 是 14 位 2457.6MSPS 双通道电信接收 器和反馈器件系列,支持输入频率高达 4GHz 及以上 的射频采样。ADC32RF82 专为高信噪比 (SNR) 设 计,其噪声频谱密度为 –154.1dBFS/Hz,并可在较大 输入频率范围提供动态范围和通道隔离。经缓冲的模拟 输入配有片上端接电阻,可在较宽频率范围内提供统一 输入阻抗并最大程度地降低采样和保持毛刺脉冲能量。

每条通道均可连接到一个双频带数字下变频器 (DDC),每个 DDC 最多连接三个独立的 16 位数控振 荡器 (NCO) 用于相位相干跳频。此外, ADC 还配有前 端峰值和 RMS 功率检测器及报警功能,用以支持外部 自动增益控制 (AGC) 算法。

ADC32RF82 支持具有基于子类 1 确定性延迟的 JESD204B 串行接口,其数据速率高达 12.5Gbps,每 个 ADC 最多具有四条信道。该器件采用 72 引脚 VQFN 封装 (10mm × 10mm), 支持工业级温度范围 (-40℃ 至 +85°C)。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
ADC32RF82	VQFN (72)	10.00mm x 10.00mm

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

INSTRUMENTS

Texas

目录

1	特性	
2	应用	1
3	说明	1
4	修订	历史记录 2
5	Pin	Configuration and Functions 3
6	Spe	cifications5
	6.1	Absolute Maximum Ratings 5
	6.2	ESD Ratings 5
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information 5
	6.5	Electrical Characteristics6
	6.6	AC Performance Characteristics: $f_S = 2457.6$ MSPS
	6.7	AC Performance Characteristics: $f_S = 2211.84$ MSPS
	6.8	AC Performance Characteristics: f _S = 1966.08 MSPS
	6.9	Digital Requirements 10
	6.10	Timing Requirements 11
	6.11	Typical Characteristics 13
7	Para	ameter Measurement Information 24
	7.1	Input Clock Diagram 24

8	Deta	iled Description 25
•	0 1	
	0.1	Eurotional Black Diagram
	0.2	Functional Block Diagram
	8.3	Feature Description
	8.4	Device Functional Modes
	8.5	Register Maps 66
9	Appl	ication and Implementation 131
	9.1	Application Information 131
	9.2	Typical Application 139
10	Pow	er Supply Recommendations 141
11	Layo	out 141
	11.1	Layout Guidelines 141
	11.2	Layout Example 142
12	器件	和文档支持 143
	12.1	文档支持143
	12.2	接收文档更新通知 143
	12.3	社区资源 143
	12.4	商标143
	12.5	静电放电警告143
	12.6	Glossary 143
13	机械	、封装和可订购信息143

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

日期	修订版本	说明
2017 年 9 月	*	初始发行版。

5 Pin Configuration and Functions

Pin Functions

NAME	NO.	I/O	DESCRIPTION				
INPUT, REFERENCE							
INAM	41		Differential analog input for shannel A				
INAP	42	I					
INBM	14		Differential analog input for shannel D				
INBP	13	I	I	I	I	I	
СМ	22	0	Common-mode voltage for analog inputs, 1.2 V				

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

www.ti.com.cn

NSTRUMENTS

Texas

Pin Functions (continued)

NAME	NO.	I/O	DESCRIPTION		
CLOCK, SYNC					
CLKINM	28		Differential clock input for the analog-to-digital converter (ADC).		
CLKINP	27	I	This pin has an internal differential 100- Ω termination.		
SYSREFM	34	1	External SYSREF input. This pin has an internal, differential 100- Ω termination and		
SYSREFP	33	I	requires external biasing.		
GPIO1	19		CPIO control pipe configured through the SPI. This pip can be configured to be		
GPIO2	20	1/0	either a fast overrange output for channel A and B, a fast detect alarm signal from		
GPIO3	21	1/0	the peak power detect, or a numerically-controlled oscillator (NCO) control.		
GPIO4	63		GPIO 4 (pin 63) can also be configured as a single-ended SYNCB input.		
CONTROL, SEP	RIAL				
RESET	48	I	Hardware reset; active high. This pin has an internal 20-k Ω pulldown resistor.		
SCLK	6	I	Serial interface clock input. This pin has an internal 20-k Ω pulldown resistor.		
SDIN	5	I/O	Serial interface data input. This pin has an internal 20 -k Ω pulldown resistor. SDIN can be data input in 4-wire mode, data input and output in 3 wire-mode.		
SEN	7		Serial interface enable. This pin has an internal 20-k Ω pullup resistor to DVDD.		
SDOUT	11	0	Serial interface data output in 4-wire mode		
PDN	50	I	Power down; active high. This pin can be configured through an SPI register sett and can be configured to a fast overrange output channel B through the SPI. This pin has an internal 20-k Ω pulldown resistor.		
DATA INTERFA	CE				
DA0M	62				
DA0P	61				
DA1M	59				
DA1P	58	0			
DA2M	56	0	JESD204B serial data output for channel A		
DA2P	55				
DA3M	54				
DA3P	53				
DB0M	65				
DB0P	66				
DB1M	68				
DB1P	69	0	IESD204B serial data output for channel B		
DB2M	71	Ũ			
DB2P	72				
DB3M	1				
DB3P	2				
SYNCBM	36		Synchronization input for the JESD204B port. This pin has an LVDS or 1.8-V logic		
SYNCBP	35	I	This pin requires external biasing.		
POWER SUPPL	Y				
AVDD19	10, 16, 24, 31, 39, 45	I	Analog 1.9-V power supply		
AVDD	9, 12, 15, 17, 25, 30, 38, 40, 43, 44, 46	I	Analog 1.15-V power supply		
DVDD	4, 8, 47, 51, 57, 64, 70	I	Digital 1.15 V-power supply, including the JESD204B transmitter		
GND	3, 18, 23, 26, 29, 32, 37, 49, 52, 60, 67	I	Ground; shorted to thermal pad inside device		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
	AVDD19	-0.3	2.1		
Supply voltage range	AVDD	-0.3	1.4	V	
	DVDD	-0.3	1.4		
	INAP, INAM and INBP, INBM	-0.3	AVDD19 + 0.3		
	CLKINP, CLKINM	-0.3	AVDD + 0.6	V	
Voltage applied to input pins	SYSREFP, SYSREFM, SYNCBP, SYNCBM	-0.3	AVDD + 0.6		
	SCLK, SEN, SDIN, RESET, PDN, GPIO1, GPIO2, GPIO3, GPIO4	-0.2	AVDD19 + 0.2		
Voltage applied to output pins		-0.3	2.2	V	
Temperature	Operating free-air, T _A	-40 85		•	
remperature	Storage, T _{stg}	-65	150	-0	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	N/
V(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT	
Supply voltage ⁽¹⁾	AVDD19	1.8	1.9	2.0	V	
	AVDD	1.1	1.15	1.25		
	DVDD	1.1	1.15	1.2		
Tomporatura	Operating free-air, T _A	-40		85	°C	
remperature	Operating junction, T _J		105 ⁽²⁾	125	Ĵ	

(1) Always power up the DVDD supply (1.15 V) before the AVDD19 (1.9 V) supply. The AVDD (1.15 V) supply can come up in any order.

(2) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

		ADC32RF82		
	THERMAL METRIC ⁽¹⁾	RMP (VQFN)	UNIT	
		72 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	21.8	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	4.4	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	2.0	°C/W	
ΨJT	Junction-to-top characterization parameter	0.1	°C/W	
Ψјв	Junction-to-board characterization parameter	2.0	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.2	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 2457.6 MSPS, 50% clock duty cycle, DDC-bypassed performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER C	ONSUMPTION ⁽¹⁾ (Dual-Channel Oper	ation, Both Channels A and B are Ac	tive; Divide-by	-4, Complex	Output M	ode ⁽²⁾)
I _{AVDD19}	1.9-V analog supply current	f _S = 2457.6 MSPS		1729	1950	mA
I _{AVDD}	1.15-V analog supply current	f _S = 2457.6 MSPS		850	1153	mA
I _{DVDD}	1.15-V digital supply current	f _S = 2457.6 MSPS		1500	1760	mA
P _D	Power dissipation	f _S = 2457.6 MSPS		5.99	6.86	W
	Global power-down power dissipation			360		mW
ANALOG INPUTS						
	Resolution			14		Bits
	Differential input full-scale			1.35		V _{PP}
V _{IC}	Input common-mode voltage			1.2 ⁽³⁾		V
R _{IN}	Input resistance	Differential resistance at dc		65		Ω
C _{IN}	Input capacitance	Differential capacitance at dc		2		pF
	V _{CM} common-mode voltage output			1.2		V
	Analog input bandwidth (–3-dB point)	ADC driven with 50- Ω source		3200		MHz
ISOLATIO	N	!	L		l.	
		f _{IN} = 100 MHz		100		
		f _{IN} = 900 MHz		99		
	Crosstalk isolation between channel A and channel R ⁽⁴⁾	f _{IN} = 1800 MHz		95		dBc
		f _{IN} = 2700 MHz		86		
		f _{IN} = 3500 MHz		85		
CLOCK IN	IPUT ⁽⁵⁾					
	Input clock frequency		1.5	2.5		GSPS
	Differential (peak-to-peak) input clock amplitude		0.5	1.5	2.5	V _{PP}
	Input clock duty cycle		45%	50%	55%	
	Internal clock biasing			1.0		V
	Internal clock termination			100		Ω

(1) See the *Power Consumption in Different Modes* section for more details.

(2) Full-scale signal is applied to the analog inputs of all active channels.

(3) When used in dc-coupling mode, the common-mode voltage at the analog inputs should be kept within V_{CM} ±25 mV for best performance.

(4) Crosstalk is measured with a -2-dBFS input signal on aggressor channel and no input on the victim channel.

(5) See 64.

6.6 AC Performance Characteristics: f_s = 2457.6 MSPS

typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 2457.6 MSPS, 50% clock duty cycle, DDC-bypassed performance⁽¹⁾, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	NOM	MAX	UNIT
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		62.5		
		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		61.2		
		f_{IN} = 1850 MHz, A_{OUT} = -2 dBFS	55	58.7		
SNR	Signal-to-noise ratio	$f_{IN} = 2100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		57.9		area
		$f_{IN} = 2600 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		56.0		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		54.2		
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		153.4		
		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		152.1		
NOD	Noise spectral density	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		149.6		1050/11
NSD	averaged across the Nyquist zone	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		148.8		dBFS/Hz
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		146.9		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		145.1		
	Small-signal SNR	f _{IN} = 1850 MHz, A _{OUT} = -40 dBFS		63.3		dBFS
NF ⁽⁴⁾	Noise figure	f _{IN} = 1850 MHz, A _{OUT} = -40 dBFS		24.7		dB
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		62.0		
	Signal-to-noise and distortion ratio	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		60.0		- dBFS
		f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		58.4		
SINAD		f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		57.5		
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		54.6		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		47.1		
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		10.0		-
		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		9.7		
ENIOF	Ff (1)	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		9.4		
ENOB	Effective number of bits	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		9.3		Bits
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		8.8		-
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		7.5		
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		71		
		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		67		
0555	Spurious-free dynamic	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		71		
SEDR	range	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		69		dBc
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		59		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		47		
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		71		
		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		67		dBc
	Second-order harmonic	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		72		
HD2	distortion	$f_{IN} = 2100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		69		
		$f_{IN} = 2700 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		59		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		48		

(1) Performance is shown with DDC bypassed. When DDC is enabled, performance improves by the decimation filtering process.

(2) Minimum values are specified at $A_{OUT} = -3$ dBFS.

(3) Output amplitude, A_{OT} , refers to the signal amplitude in the ADC digital output that is same as the analog input amplitude, A_{IN} , except when the digital gain feature is used. If digital gain is G, then $A_{OUT} = G + A_{IN}$.

(4) The ADC internal resistance = 65 Ω , the driving source resistance = 50 Ω .

AC Performance Characteristics: f_s = 2457.6 MSPS (continued)

typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 2457.6 MSPS, 50% clock duty cycle, DDC-bypassed performance⁽¹⁾, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN ⁽²⁾	NOM	MAX	UNIT
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		80		
HD3		$f_{IN} = 900 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		73		dBc
	Third-order harmonic	$f_{IN} = 1850 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$	59	75		
	distortion	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		76		
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		73		
		$f_{IN} = 3500 \text{ MHz}, A_{OUT}^{(3)} = -3 \text{ dBFS}$ with 2-dB gain		48		
		f _{IN} = 100 MHz, A _{OUT} = –2 dBFS		90		
		f _{IN} = 900 MHz, A _{OUT} = -2 dBFS		86		
HD4.	Fourth- and fifth-order	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS	68	91		10
HD5	harmonic distortion	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		87		dBc
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		91		
		$f_{IN} = 3500 \text{ MHz}, A_{OUT}^{(3)} = -3 \text{ dBFS with 2-dB gain}$		85		
		f _{IN} = 100 MHz, A _{OUT} = -2 dBFS		91		
		f _{IN} = 900 MHz, A _{OUT} = -2 dBFS		87		dBc
	Interleaving spurs: $f_S / 2 - f_{IN}$, $f_S / 4 \pm f_{IN}$	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS	63	82		
IL spur		f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		84		
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		78		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		75		
		f _{IN} = 100 MHz, A _{OUT} = -2 dBFS		90.0		
		f _{IN} = 900 MHz, A _{OUT} = -2 dBFS		85.0		dBc
	Interleaving spur for HD2:	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		80.0		
HD2 IL	f _S / 2 – HD2	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		80.0		
		f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		79.0		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		66.0		
		$f_{IN} = 100 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		85.0		
	Courieure france durante	f _{IN} = 900 MHz, A _{OUT} = -2 dBFS		81.0		
Worst	range (excluding HD2, HD3,	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		76.0		
spur	HD4, HD5, and interleaving	f _{IN} = 2100 MHz, A _{OUT} = -2 dBFS		76.0		авс
	spurs IL and HD2 IL)	f _{IN} = 2600 MHz, A _{OUT} = -2 dBFS		75.0		
		f_{IN} = 3500 MHz, $A_{OUT}^{(3)}$ = -3 dBFS with 2-dB gain		71.0		
	Two-tone, third-order intermodulation distortion	$f_{IN1} = 900 \text{ MHz}, f_{IN2} = 950 \text{ MHz},$ $A_{OUT} = -8 \text{ dBFS}$ (each tone)		75		
		f_{IN1} = 1770 MHz, f_{IN2} = 1790 MHz, A _{OUT} = -8 dBFS (each tone)		76		
		f_{IN1} = 2090 MHz, f_{IN2} = 2100 MHz, A _{OUT} = -8 dBFS (each tone)		76		art2
		$f_{IN1} = 2590 \text{ MHz}, f_{IN2} = 2600 \text{ MHz},$ $A_{OUT} = -8 \text{ dBFS}$ (each tone)		65		

6.7 AC Performance Characteristics: f_s = 2211.84 MSPS

typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 2211.84 MSPS, 50% clock duty cycle, DDC-bypassed performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN NOM	MAX	UNIT	
SNR	Circulto noine notio	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	61.4		ARES	
	Signal-10-hoise ratio	$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	58.9		UDF 3	
	Spurious-free dynamic	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	67.0		ID -	
SFDR	range	$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	69.0		ивс	
HD2	Second-order harmonic distortion	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	73.0		dBc	
		$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	70.0			
כחם	Third-order harmonic distortion	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	68.0		dBc	
прэ		$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	74.0			
	Interleaving spurs: $f_S / 2 - f_{IN}$, $f_S / 4 \pm f_{IN}$	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	88.0		dBc	
IL spur		f_{IN} = 1850 MHz, A_{OUT} = -2 dBFS	82.0			
HD2 IL	Interleaving spur for HD2: f _S / 2 – HD2	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	82.0		dDo	
		$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$	84.0		UBC	

6.8 AC Performance Characteristics: f_s = 1966.08 MSPS

typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 1966.08 MSPS, 50% clock duty cycle, DDC-bypassed performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	NOM	MAX	UNIT	
SNR		$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		61.0		dBFS	
	Signal-to-hoise ratio	$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		58.7			
	Spurious-free dynamic	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		65.0			
SFDR	range	$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		67.0		uвс	
HD2	Second-order harmonic distortion	$f_{IN} = 900 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		68.0		dPo	
		$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		67.0		UDC	
גטח	Third-order harmonic distortion	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		70.0		dBc	
пра		$f_{IN} = 1850 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		77.0			
	Interleaving spurs: $f_S / 2 - f_{IN}$, $f_S / 4 \pm f_{IN}$	$f_{IN} = 900 \text{ MHz}, A_{OUT} = -2 \text{ dBFS}$		86.0			
IL spur		f_{IN} = 1850 MHz, A_{OUT} = -2 dBFS		84.0		dBc	
וו כסע	Interleaving spur for HD2:	$f_{IN} = 900 \text{ MHz}, \text{ A}_{OUT} = -2 \text{ dBFS}$		81.0		dPo	
HD2 IL	f _S / 2 – HD2	f _{IN} = 1850 MHz, A _{OUT} = -2 dBFS		84.0		UBC	

ADC32RF82

ZHCSGR4-SEPTEMBER 2017

6.9 Digital Requirements

PARAMETER		TEST CONDITIONS	MIN	NOM	MAX	UNIT		
DIGITAL	DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, PDN, GPIO1, GPIO2, GPIO3, GPIO4)							
VIH	High-level input voltage		0.8			V		
V _{IL}	Low-level input voltage				0.4	V		
I _{IH}	High-level input current			50		μA		
IIL	Low-level input current			-50		μA		
Ci	Input capacitance			4		pF		
DIGITAL	OUTPUTS (SDOUT, GPIO1, GPIO2,	, GPIO3, GPIO4)						
V _{OH}	High-level output voltage		AVDD19 -0.1	AVDD19		V		
V _{OL}	Low-level output voltage				0.1	V		
DIGITAL	INPUTS (SYSREFP and SYSREFM)	; SYNCBP and SYNCBM; Requires External B	iasing)					
V _{ID}	Differential input voltage		350	450	800	mV_{PP}		
V _{CM}	Input common-mode voltage		1.05	1.2	1.325	V		
DIGITAL	OUTPUTS (JESD204B Interface: D	A[3:0], DB[3:0], Meets JESD204B LV-0IF-11G-	SR Standar	d)				
V _{OD}	Output differential voltage			700		mV_{PP}		
V _{OCM}	Output common-mode voltage			450		mV		
	Transmitter short-circuit current	Transmitter pins shorted to any voltage between –0.25 V and 1.45 V	-100		100	mA		
Z _{OS}	Single-ended output impedance			50		Ω		
Co	Output capacitance	Output capacitance inside the device, from either output to ground		2		pF		

6.10 Timing Requirements

typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient temperature range of -40°C to +85°C; and chip sampling rate = 2457.6 MSPS, 50% clock duty cycle, DDC-bypassed performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, -2-dBFS differential input, and 0-dB digital gain (unless otherwise noted)

			MIN	NOM	MAX	UNIT
SAMPLE T	IMING					
	Aperture delay		250		750	ps
	Aperture delay matching between t	wo channels on the same device		±15		ps
	Aperture delay matching between t temperature and supply voltage	wo devices at the same		±150		ps
	Aperture jitter, clock amplitude = 2	V _{PP}		90		f _S
Latency (1)(2)	Data latency, ADC sample to digital output	DDC block bypassed ⁽³⁾ , LMFS = 8224		424		Input clock cycles
	Fast overrange latency, ADC samp	le to FOVR indication on GPIO pins		70		
t _{PD}	Propagation delay time: logic gates (does not change with f _S)		6		ns	
SYSREF T	IMING ⁽⁴⁾					
t _{SU_SYSREF}	SYSREF setup time: referenced to	clock rising edge, 2457.6 MSPS	140	70		ps
t _{H_SYSREF}	SYSREF hold time: referenced to c	lock rising edge, 2457.6 MSPS	50	20		ps
	Valid transition window sampling pe	eriod: t _{SU_SYSREF} – t _{H_SYSREF} , 2457.6 MSPS	143			ps
JESD OUT	PUT INTERFACE TIMING					
UI	Unit interval: 12.5 Gbps		80	100	400	ps
	Serial output data rate		2.5	10.0	12.5	Gbps
	Rise, fall times: 1-pF, single-ended	load capacitance to ground		60		ps
	Total jitter: BER of 1E-15 and lane	rate = 12.5 Gbps		25		%UI
	Random jitter: BER of 1E-15 and la	ane rate = 12.5 Gbps		0.99		%UI, rms
	Deterministic jitter: BER of 1E-15 and lane rate = 12.5 Gbps 9.1					%UI, pk- pk

(1)

Overall latency = latency + t_{PD} . Latency increases when the DDC modes are used; see $\frac{1}{5}$ 4. For latency in different DDC options, see $\frac{1}{5}$ 4. (2)

(3)

Common-mode voltage for the SYSREF input is kept at 1.2 V. (4)

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

 V_{OCM} is not the same as $V_{\text{ICM}}.$ Similarly, V_{OD} is not the same as $V_{\text{ID}}.$

图 1. Logic Levels for Digital Inputs and Outputs

6.11 Typical Characteristics

Typical Characteristics (接下页)

Typical Characteristics (接下页)

7 Parameter Measurement Information

7.1 Input Clock Diagram

www.ti.com.cn

8 Detailed Description

8.1 Overview

The ADC32RF82 is a dual, 14-bit, 2457.6-MSPS, telecom receiver and feedback device family containing analog-to-digital converters (ADCs) followed by multi-band digital down-converters (DDCs), and a back-end JESD204B digital interface.

The ADCs are preceded by input buffers and on-chip termination to provide a uniform input impedance over a large input frequency range. Furthermore, an internal differential clamping circuit provides first-level protection against overvoltage conditions. Each ADC channel is internally interleaved four times and equipped with background, analog and digital, and interleaving correction.

The on-chip DDC enables single- or dual-band internal processing to pre-select and filter smaller bands of interest and also reduces the digital output data traffic. Each DDC is equipped with up to three independent, 16-bit numerically-controlled oscillators (NCOs) for phase coherent frequency hopping; the NCOs can be controlled through the SPI or GPIO pins. The ADC32RF82 also provides three different power detectors on-chip with alarm outputs in order to support external automatic gain control (AGC) loops.

The processed data are passed into the JESD204B interface where the data are framed, encoded, serialized, and output on one to four lanes per channel, depending on the ADC sampling rate and decimation. The CLKIN, SYSREF, and SYNCB inputs provide the device clock and the SYSREF and SYNCB signals to the JESD204B interface that are used to derive the internal local frame and local multiframe clocks and establish the serial link. All features of the ADC32RF82 is configurable through the SPI.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Analog Inputs

The ADC32RF82 analog signal inputs are designed to be driven differentially. The analog input pins have internal analog buffers that drive the sampling circuit. The ADC32RF82 provides on-chip, differential termination to minimize reflections. The buffer also helps isolate the external driving circuit from the internal switching currents of the sampling circuit, thus resulting in a more constant SFDR performance across input frequencies.

The common-mode voltage of the signal inputs is internally biased to CM using the 32.5- Ω termination resistors that allow for ac-coupling of the input drive network. \mathbb{E} 65 and \mathbb{E} 66 show SDD11 at the analog inputs from dc to 5 GHz with a 100- Ω reference impedance.

Feature Description (接下页)

The input impedance of analog inputs can also be modelled as parallel combination of equivalent resistance and capacitance. \mathbb{R} 67 and \mathbb{R} 68 show how equivalent impedance (C_{IN} and R_{IN}) vary over frequency.

Each input pin (INP, INM) must swing symmetrically between (CM + 0.3375 V) and (CM – 0.3375 V), resulting in a 1.35-V_{PP} (default) differential input swing. \mathbb{E} 69 shows that the input sampling circuit has a 3-dB bandwidth that extends up to approximately 3.2 GHz.

图 69. Input Bandwidth with a 100- Ω Source Resistance

Feature Description (接下页)

8.3.1.1 Input Clamp Circuit

The ADC32RF82 analog inputs include an internal, differential clamp for overvoltage protection. B 70 and B 71 shows that the clamp triggers for any input signals at approximately 600 mV above the input common-mode voltage, effectively limiting the maximum input signal to approximately 2.4 V_{PP}.

When the clamp circuit conducts, the maximum differential current flowing through the circuit (via input pins) must be limited to 20 mA.

Feature Description (接下页)

8.3.2 Clock Input

The ADC32RF82 sampling clock input includes internal 100- Ω differential termination along with on-chip biasing. The clock input is recommended to be ac-coupled externally. The input bandwidth of the clock input is approximately 3 GHz; n the smith chart of \mathbb{R} 72 shows the clock input impedance with a 100- Ω reference impedance.

图 72. SDD11 of the Clock Input

Feature Description (接下页)

The analog-to-digital converter (ADC) aperture jitter is a function of the clock amplitude applied to the pins. **1** 73 shows the equivalent aperture jitter for input frequencies at a 1-GHz and a 2-GHz input. Depending on the clock frequency, a matching circuit can be designed in order to maximize the clock amplitude.

图 73. Equivalent Aperture Jitter vs Input Clock Amplitude

8.3.3 SYSREF Input

The SYSREF signal is a periodic signal that is sampled by the ADC32RF82 device clock and is used to align the boundary of the local multiframe clock inside the data converter. SYSREF is also used to reset critical blocks [such as the clock divider for the interleaved ADCs, numerically-controlled oscillators (NCOs), decimation filters and so forth].

The SYSREF input requires external biasing. Furthermore, SYSREF must be established before the SPI registers are programmed. A programmable delay on the SYSREF input, as shown in ⊠ 74, is available to help with skew adjustment when the sampling clock and SYSREF are not provided from the same source.

图 74. SYSREF Internal Circuit Diagram

Feature Description (接下页)

8.3.3.1 Using SYSREF

The ADC32RF82 uses SYSREF information to reset the clock divider, the NCO phase, and the LMFC counter of the JESD interface. The device provides flexibility to provide SYSREF information either from dedicated pins or through SPI register bits. SYSREF is asserted, as shown in 🕅 75, by a low-to-high transition on the SYSREF pins or a 0-to-1 change in the ASSERT SYSREF REG bit when using SPI registers.

图 75. Using SYSREF to Reset the Clock Divider, the NCO, and the LMFC Counter

The ADC32RF82 samples the SYSREF signal on the input clock rising edge. Required setup and hold time are listed in the *Timing Requirements* table. 表 1 shows that the input clock divider gets reset each time that SYSREF is asserted, whereas the NCO phase and the LMFC counter of the JESD interface are reset on each SYSREF assertion after disregarding the first two assertions.

表 1. Asserting SYSREF

SYSPEE ASSERTION INDEX	ACTION					
STOREF ASSERTION INDEX	INPUT CLOCK DIVIDER	NCO PHASE	LMFC COUNTER			
1	Gets reset	Does not get reset	Does not get reset			
2	Gets reset	Does not get reset	Does not get reset			
3	Gets reset	Gets reset	Gets reset			
4 and onwards	Gets reset	Gets reset	Gets reset			

The SESREF use-cases can be classified broadly into two categories:

1. SYSREF is applied as aperiodic multi-shot pulses.

图 76 shows a case when only a counted number of pulses are applied as SYSREF to the ADC.

图 76. SYSREF Used as Aperiodic, Finite Number of Pulses

After the first SYSREF pulse is applied, allow the DLL in the clock path to settle by waiting for the t_{DLL} time (> 40 µs) before applying the second pulse. During this time, mask the SYSREF going to the input clock divider by setting the MASK CLKDIV SYSREF bit so that the divider output phase remains stable. The NCO phase and LMFC counter are reset on the third SYSREF pulse. After the third SYSREF pulse, the SYSREF going to the NCO and JESD block can be disabled by setting the MASK NCO SYSREF bit to avoid any unwanted resets.

2. SYSREF is applied as a periodic pulse.

8 77 shows how SYSREF can be applied as a continuous periodic waveform.

t_{SYSREF} is a period of the SYSREF waveform.

Alternatively, the SYSREF buffer can be powered down using the PDN SYSREF bit.

图 77. SYSREF Used as a Periodic Waveform

After applying the SYSREF signal, DLL must be allowed to lock, and the NCO phase and LMFC counter must be allowed to reset by waiting for at least the t_{DLL} (40 µs) + 2 × t_{SYSREF} time. Then, the SYSREF going to the NCO and JESD can be masked by setting the MASK NCO SYSREF register bit.

8.3.3.2 Frequency of the SYSREF Signal

When SYSREF is a periodic signal, as described in $\Delta \vec{x} \mathbf{1}$, its frequency is required to be a sub-harmonic of the internal local multi-frame clock (LMFC) frequency. The LMFC frequency is determined by the selected decimation, frames per multi-frame setting (K), samples per frame (S), and device input clock frequency.

SYSREF = LMFC / N

where

• N is an integer value (1, 2, 3, and so forth)

(1)

In order for the interleaving correction engine to synchronize properly, the SYSREF frequency must also be a multiple of f_S / 64. $\frac{1}{8}$ 2 provides a summary of the valid LMFC clock settings.

表	2.	. SYSREF	and	LMFC	Clock	Frequ	iency
---	----	----------	-----	------	-------	-------	-------

OPERATING MODE	LMFS SETTING	LMFC CLOCK FREQUENCY	SYSREF FRQUENCY
Decimation	Various	$f_{S}^{(1)} / (D \times S^{(2)} \times K^{(3)})$	$f_{S} / (N \times LCM^{(4)} (64, D^{(5)} \times S \times K))$

(1) $f_S =$ sampling (device) clock frequency.

(2) S = samples per frame.

(3) K = number of frames per multi-frame.

(4) LCM = least-common multiple.
(5) D = decimation ratio.

The SYSREF signal is recommended to be a low-frequency signal less than 5 MHz in order to reduce coupling to the signal path both on the printed circuit board (PCB) as well as internal to the device.

INSTRUMENTS

EXAS

www.ti.com.cn

Example: f_S = 2457.6 MSPS, Divide-by-4 (LMFS = 8411), K = 16

SYSREF = 2457.6 MSPS / LCM (4 ,64, 16) = 32 MHz / N

Operate SYSREF at 2.4 MHz (effectively divide-by-1024, N = 16)

For proper device operation, disable the SYSREF signal after the JESD synchronization is established.

8.3.4 DDC Block

The ADC32RF82 provides a sophisticated on-chip, digital down converter (DDC) block that can be controlled through SPI register settings and the general-purpose input/output (GPIO) pins. The DDC block supports two basic operating modes: receiver (RX) mode with single- or dual-band DDC and wide-bandwidth observation receiver mode.

Each ADC channel is followed by two DDC chains, as shown in 🕅 78, consisting of the digital filter along with a complex digital mixer with a 16-bit numerically-controlled oscillator (NCO). The NCOs allow accurate frequency tuning within the Nyquist zone prior to the digital filtering. One DDC chain is intended for supporting a dual-band DDC configuration in receiver mode and the second DDC chain supports the wide-bandwidth output option for the observation configuration. At any given time, either the single-band DDC, the dual-band DDC, or the wideband DDC can be enabled. Furthermore, three different NCO frequencies can be selected on that path and are quickly switched using the SPI or the GPIO pins to enable wide-bandwidth observation in a multi-band application.

NOTE: Red traces show SYSREF going to the NCO blocks.

图 78. DDC Chains Overview (One ADC Channel Shown)

Additionally, the decimation filter block provides the option to convert the complex output back to real format at twice the decimated, complex output rate. The filter response with a real output is identical to a complex output. The band is centered in the middle of the Nyquist zone (mixed with f_{OUT} / 4) based on a final output data rate of f_{OUT} .

8.3.4.1 Operating Mode: Receiver

In receiver mode, the DDC block can be configured as shown in \mathbb{E} 79 to single- or dual-band operation. Both DDC chains use the same decimation filter setting and the available options are discussed in the *Decimation Filters* section. The decimation filter setting also directly affects the interface rate and number of lanes of the JESD204B interface.

NOTE: Red traces show SYSREF going to the NCO blocks.

图 79. Decimation Filter Option for Single- or Dual-Band Operation

8.3.4.2 Operating Mode: Wide-Bandwidth Observation Receiver

This mode is intended for using a DDC with a wide bandwidth output, but for multiple bands. This mode uses a single DDC chain, as shown in 🕅 80, where up to three NCOs can be used to perform wide-bandwidth observation in a multi-band environment. The three NCOs can be switched dynamically using either the GPIO pins or an SPI command. All three NCOs operate continuously to ensure phase continuity; however, when the NCO is switched, the output data are invalid until the decimation filters are completely flushed with data from the new band.

NOTE: Red traces show SYSREF going to the NCO blocks.

图 80. Decimation Filter Implementation for Single-Band and Wide-Bandwidth Mode

8.3.4.3 Decimation Filters

The stop-band rejection of the decimation filters is approximately 90 dB with a pass-band bandwidth of approximately 80%. $\frac{1}{5}$ 3 gives an overview of the pass-band bandwidth depending on decimation filter setting and ADC sampling rate.

		BANDWIDTH ADC SAMPLE RATE = N MSPS		ADC SAMPLE RATE = 3 GSP				
DECIMATION SETTING	AVAILABLE PER CHANNEL	NOMINAL PASSBAND GAIN	3 dB (%)	1 dB (%)	OUTPUT RATE (MSPS) PER BAND	OUTPUT BANDWIDTH (MHz) PER BAND	COMPLEX OUTPUT RATE (MSPS) PER BAND	OUTPUT BANDWIDTH (MHz) PER BAND
Divide-by-4 complex	1	-0.4 dB	90.9	86.8	N / 4 complex	0.4 × N / 2	750	600
Divide-by-6 complex	1	–0.65 dB	90.6	86.1	N / 6 complex	0.4 × N / 3	.4 × N / 3 500	
Divide-by-8 complex	2	–0.27 dB	91.0	86.8	N / 8 complex	0.4 × N / 4	375	300
Divide-by-9 complex	2	–0.45 dB	90.7	86.3	N / 9 complex	0.4 × N / 4.5	333.3	266.6
Divide-by-10 complex	2	–0.58 dB	90.7	86.3	N / 10 complex	0.4 × N / 5	300	240
Divide-by-12 complex	2	–0.55 dB	90.7	86.4	N / 12 complex	0.4 × N / 6	250	200
Divide-by-16 complex	2	–0.42 dB	90.8	86.4	N / 16 complex	0.4 × N / 8	187.5	150
Divide-by-18 complex	2	–0.83 dB	91.2	87.0	N / 18 complex	0.4 × N / 9	166.6	133
Divide-by-20 complex	2	–0.91 dB	91.2	87.0	N / 20 complex	0.4 × N / 10	150	120
Divide-by-24 complex	2	–0.95 db	91.1	86.9	N / 24 complex	0.4 × N / 12	125	100
Divide-by-32 complex	2	–0.78 dB	91.1	86.8	N / 32 complex	0.4 × N / 16	93.75	75

表 3. Decimation Filter Summary and Maximum Available Output Bandwidth

图 81 shows a dual-band example with a divide-by-8 complex.

图 81. Dual-Band Example

The decimation filter responses normalized to the ADC sampling clock are illustrated in 81 to 104 and can be interpreted as follows:

图 82 shows that each figure contains the filter pass-band, transition bands, and alias bands. The x-axis in 图 82 shows the offset frequency (after the NCO frequency shift) normalized to the ADC sampling clock frequency.

For example, in the divide-by-4 complex, the output data rate is an $f_S / 4$ complex with a Nyquist zone of $f_S / 8$ or $0.125 \times f_S$. The transition band is centered around $0.125 \times f_S$ and the alias transition band is centered at $0.375 \times f_S$. The alias bands that alias on top of the wanted signal band are centered at $0.25 \times f_S$ and $0.5 \times f_S$ (and are colored in red).

The decimation filters of the ADC32RF82 provide greater than 90-dB attenuation for the alias bands.

8.3.4.3.1 Divide-by-4

Peak-to-peak pass-band ripple: approximately 0.22 dB

8.3.4.3.2 Divide-by-6

Peak-to-peak pass-band ripple: approximately 0.38 dB

8.3.4.3.3 Divide-by-8

Peak-to-peak pass-band ripple: approximately 0.25 dB

ADC32RF82

ZHCSGR4-SEPTEMBER 2017

Texas Instruments

www.ti.com.cn

8.3.4.3.4 Divide-by-9

Peak-to-peak pass-band ripple: approximately 0.39 dB

8.3.4.3.5 Divide-by-10

Peak-to-peak pass-band ripple: approximately 0.39 dB

8.3.4.3.6 Divide-by-12

Peak-to-peak pass-band ripple: approximately 0.36 dB

8.3.4.3.7 Divide-by-16

Peak-to-peak pass-band ripple: approximately 0.29 dB

8.3.4.3.8 Divide-by-18

Peak-to-peak pass-band ripple: approximately 0.33 dB

8.3.4.3.9 Divide-by-20

Peak-to-peak pass-band ripple: approximately 0.32 dB

ADC32RF82

ZHCSGR4-SEPTEMBER 2017

TEXAS INSTRUMENTS

www.ti.com.cn

8.3.4.3.10 Divide-by-24

Peak-to-peak pass-band ripple: approximately 0.30 dB

8.3.4.3.11 Divide-by-32

Peak-to-peak pass-band ripple: approximately 0.24 dB

8.3.4.3.12 Latency with Decimation Options

表 4 describes device latency for different DDC options. At higher decimation options, latency increases because of the increase in number of taps in the decimation filter.

DECIMATION OPTION	TOTAL LATENCY, DEVICE CLOCK CYCLES
Divide-by-4	516
Divide-by-6	746
Divide-by-8	621
Divide-by-9	763.5
Divide-by-10	811
Divide-by-12	897
Divide-by-16	1045
Divide-by-18	1164
Divide-by-20	1256
Divide-by-24	1443
Divide-by-32	1773

表 4. Latency With Different Decimation Options

8.3.4.4 Digital Multiplexer (MUX)

The ADC32RF82 supports a mode where the output data of the ADC channel A can be routed internally to the digital blocks of both channel A and channel B. 图 105 shows that the ADC channel B can be powered down. In this manner, the ADC32RF82 can be configured as a single-channel ADC with up to four independent DDC chains or two wideband DDC chains. All decimation filters and JESD204B format configurations are identical to the two ADC channel operation.

图 105. Digital Multiplexer Option

8.3.4.5 Numerically-Controlled Oscillators (NCOs) and Mixers

The ADC32RF82 is equipped with three independent, complex NCOs per ADC channel. As shown in 公式 2, the oscillator generates a complex exponential sequence.

 $\mathbf{x}[\mathbf{n}] = \mathbf{e}^{-j\omega \mathbf{n}}$

where

frequency (ω) is specified as a signed number by the 16-bit register setting

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

www.ti.com.cn

The complex exponential sequence is multiplied by the real input from the ADC to mix the desired carrier down to 0 Hz.

Each ADC channel has two DDCs. The first DDC has three NCOs and the second DDC has one NCO. The first DDC can dynamically select one of the three NCOs based on the GPIO pin or SPI selection. In wide-bandwidth mode (lower decimation factors, for example, 4 and 6), there can only be one DDC for each ADC channel. The NCO frequencies can be programmed independently through the DDCx, NCO[4:1], and the MSB and LSB register settings.

The 16-bit register value given by 公式 3 sets the NCO frequency setting:

$$f_{NCO} = \frac{DDCxNCOy \times f_S}{2^{16}}$$
 where

۷

(3)

For example:

If $f_S = 2457.6$ MSPS, then the NCO register setting = 38230 (decimal).

Thus, 公式 4 defines f_{NCO}:

$$f_{NCO} = 38230 \times \frac{2457.6 \text{ MSPS}}{2^{16}} = 1433.625 \text{ MHz}$$

(4)

Any register setting changes that occur after the JESD204B interface is operational results in a non-deterministic NCO phase. If a deterministic phase is required, the JESD204B interface must be reinitialized after changing the register setting.

8.3.5 NCO Switching

The first DDC (DDC0) on each ADC channel provides three different NCOs that can be used for phase-coherent frequency hopping. This feature is available in both single-band and dual-band mode, but only affects DDC0.

The NCOs can be switched through an SPI control or by using the GPIO pins with the register configurations shown in 表 5 for channel A (50xxh) and channel B (58xxh). The assignment of which GPIO pin to use for INSEL0 and INSEL1 is done based on 表 6, using registers 5438h and 5C38h. The NCO selection is done based on the logic selection on the GPIO pins; see $\frac{1}{5}$ 7 and $\frac{106}{5}$.

REGISTER	ADDRESS	DESCRIPTION				
NCO CONTROL THROUGH GPIO PINS						
NCO SEL pin	500Fh, 580Fh	Selects the NCO control through the SPI (default) or a GPIO pin.				
INSEL0, INSEL1	5438h, 5C38h	Selects which two GPIO pins are used to control the NCO.				
NCO CONTROL THROUGH SPI CONTROL						
NCO SEL pin	500Fh, 580Fh	Selects the NCO control through the SPI (default) or a GPIO pin.				
NCO SEL	5010h, 5810h	Selects which NCO to use for DDC0.				

表 5. NCO Register Configurations

表 6. GPIO Pin Assignment

INSELx[1:0] (Where x = 0 or 1)	GPIO PIN SELECTED			
00	GPIO4			
01	GPIO1			
10	GPIO3			
11	GPIO2			

表 7. NCO Selection								
NCO SEL[1]	NCO SELECTED							
0	0	NCO1						
0	1	NCO2						
1	0	NCO3						
1	1	n/a						

8.3.6 SerDes Transmitter Interface

Each 12.3-Gbps serializer, deserializer (SerDes) LVDS transmitter output requires ac-coupling between the transmitter and receiver. Terminate the differential pair as shown in \mathbb{R} 107 with 100- Ω resistance (that is, two 50- Ω resistors) as close to the receiving device as possible to avoid unwanted reflections and signal degradation,.

图 107. External Serial JESD204B Interface Connection

版权 © 2017, Texas Instruments Incorporated

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

8.3.7 Eye Diagrams

图 108 and 图 109 show the serial output eye diagrams of the ADC32RF82 at 5.0 Gbps and 12 Gbps against the JESD204B mask.

8.3.8 Alarm Outputs: Power Detectors for AGC Support

The GPIO pins can be configured as alarm outputs for channels A and B. The ADC32RF82 supports three different power detectors (an absolute peak power detector, crossing detector, and RMS power detector) as well as fast overrange from the ADC. The power detectors operate off the full-rate ADC output prior to the decimation filters.

8.3.8.1 Absolute Peak Power Detector

In this detector mode, the peak is computed over eight samples of the ADC output. Next, the peak for a block of N samples (N × S`) is computed over a programmable block length and then compared against a threshold to either set or reset the peak detector output (\mathbb{R} 110 and \mathbb{R} 111). There are two sets of thresholds and each set has two thresholds for hysteresis. The programmable DWELL-time counter is used for clearing the block detector alarm output.

图 110. Peak Power Detector Implementation

图 111. Peak Power Detector Timing Diagram

 $\frac{1}{8}$ 8 shows the register configurations required to set up the absolute peak power detector. The detector operates in the f_s / 8 clock domain; one peak sample is calculated over eight actual samples.

The automatic gain control (AGC) modes can be configured separately for channel A (54xxh) and channel B (5Cxxh), although some registers are common in 54xxh (such as the GPIO pin selection).

REGISTER	ADDRESS	DESCRIPTION
PKDET EN	5400, 5C00h	Enables peak detector
BLKPKDET	5401h, 5402h, 5403h, 5C01h, 5C02h, 5C03h	Sets the block length N of number of samples (S`). Number of actual ADC samples is $8x$ this value: N is 17 bits: 1 to 2^{16} .
BLKTHHH, BLKTHHL, BLKTHLH, BLKTHLL	5407h, 5408h, 5409h, 540Ah, 5C07h, 5C08h, 5C09h, 5C0Ah	Sets the different thresholds for the hysteresis function values from 0 to 256 (where 256 is equivalent to the peak amplitude). For example: if BLKTHHH is to -2 dBFS from peak, $10^{(-2/20)} \times 256 = 203$, then set 5407h and 5C07h = CBh.
DWELL	540Bh, 540Ch, 5C0Bh, 5C0Ch	When the computed block peak crosses the upper thresholds BLKTHHH or BLKTHLH, the peak detector output flags are set. In order to be reset, the computed block peak must remain continuously lower than the lower threshold (BLKTHHL or BLKTHLL) for the period specified by the DWELL value. This threshold is 16 bits and is specified in terms of $f_S / 8$ clock cycles.
OUTSEL GPIO[4:1]	5432h, 5433h, 5434h, 5435h	Connects the BLKPKDETH, BLKPKDETL alarms to the GPIO pins; common register.
IODIR	5437h	Selects the direction for the four GPIO pins; common register.
RESET AGC	542Bh, 5C2Bh	After configuration, reset the AGC module to start operation.

表 8. Registers Required for the Peak Power Detector

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

TEXAS INSTRUMENTS

8.3.8.2 Crossing Detector

In this detector mode the peak is computed over eight samples of the ADC output. Next, the peak for a block of N samples (N × S`) is computed over a programmable block length and then the peak is compared against two sets of programmable thresholds (with hysteresis). The crossing detector counts how many $f_S / 8$ clock cycles that the block detector outputs are set high over a programmable time period and compares the counter value against the programmable thresholds. The alarm outputs shown in 🕅 112 and 🕅 113 are updated at the end of the time period, routed to the GPIO pins, and held in that state through the next cycle. Alternatively, a 2-bit format can be used but (because the ADC32RF82 has four GPIO pins available) this feature uses all four pins for a single channel.

图 113. Crossing Detector Timing Diagram

 $\frac{1}{8}$ 9 shows the register configurations required to set up the crossing detector. The detector operates in the f_s / 8 clock domain. The AGC modes can be configured separately for channel A (54xxh) and channel B (5Cxxh), although some registers are common in 54xxh (such as the GPIO pin selection).

REGISTER	ADDRESS	DESCRIPTION
PKDET EN	5400h, 5C00h	Enables peak detector
BLKPKDET	5401h, 5402h, 5403h, 5C01h, 5C02h, 5C03h	Sets the block length N of number of samples (S`). Number of actual ADC samples is 8x this value: N is 17 bits: 1 to 2 ¹⁶ .
BLKTHHH, BLKTHHL, BLKTHLH, BLKTHLL 5C09h, 5C0Ah		Sets the different thresholds for the hysteresis function values from 0 to 256 (where 256 is equivalent to the peak amplitude). For example: if BLKTHHH is to -2 dBFS from peak, $10^{(-2 / 20)} \times 256 = 203$, then set 5407h and 5C07h = CBh.
FILT0LPSEL 540Dh, 5C0Dh		Select block detector output or 2-bit output mode as the input to the interrupt identification register (IIR) filter.
TIMECONST	540Eh, 540Fh, 5C0Eh, 5C0Fh	Sets the crossing detector time period for N = 0 to 15 as 2N × f_S / 8 clock cycles. The maximum time period is 32768 × f_S / 8 clock cycles (approximately 87 µs at 3 GSPS).
FILOTHH, FILOTHL, FIL1THH, FIL1THL	540Fh-5412h, 5C0Fh- 5C12h, 5416h-5419h, 5C16h-5C19h	Comparison thresholds for the crossing detector counter. These thresholds are 16- bit thresholds in 2.14-signed notation. A value of 1 (4000h) corresponds to 100% crossings, a value of 0.125 (0800h) corresponds to 12.5% crossings.
DWELLIIR	541Dh, 541Eh, 5C1Dh, 5C1Eh	DWELL counter for the IIR filter hysteresis.
IIR0 2BIT EN, IIR1 2BIT EN	5413h, 54114h, 5C13h, 5C114h	Enables 2-bit output format for the crossing detector.
OUTSEL GPIO[4:1] 5432h, 5433h, 5434h, 5435h		Connects the IIRPKDET0, IIRPKDET1 alarms to the GPIO pins; common register.
IODIR	5437h	Selects the direction for the four GPIO pins; common register.
RESET AGC	542Bh, 5C2Bh	After configuration, reset the AGC module to start operation.

表 9. Registers Required for the Crossing Detector Operation

8.3.8.3 RMS Power Detector

In this detector mode the peak power is computed for a block of N samples over a programmable block length and then compared against two sets of programmable thresholds (with hysteresis).

图 114. RMS Power Detector Implementation

 $\frac{10}{5}$ shows the register configurations required to set up the RMS power detector. The detector operates in the f_S / 8 clock domain. The AGC modes can be configured separately for channel A (54xxh) and channel B (5Cxxh), although some registers are common in 54xxh (such as the GPIO pin selection).

REGISTER	ADDRESS	DESCRIPTION
RMSDET EN	5420h, 5C20h	Enables RMS detector
PWRDETACCU	5421h, 5C21h	Programs the block length to be used for RMS power computation. The block length is defined in terms of $f_S / 8$ clocks. The block length can be programmed as 2^M with M = 0 to 16.
PWRDETH, PWRDETL	5422h, 5423h, 5424h, 5425h, 5C22h, 5C23h, 5C24h, 5C25h	The computed average power is compared against these high and low thresholds. One LSB of the thresholds represents $1 / 2^{16}$. For example: is PWRDETH is set to -14 dBFS from peak, $[10^{(-14 / 20)}]^2 \times 2^{16} = 2609$, then set 5422h, 5423h, 5C22h, 5C23h = 0A31h.
RMS2BIT EN	5427h, 5C27h	Enables 2-bit output format for the RMS detector output.
OUTSEL GPIO[4:1]	5432h, 5433h, 5434h, 5435h	Connects the PWRDET alarms to the GPIO pins; common register.
IODIR	5437h	Selects the direction for the four GPIO pins; common register.
RESET AGC	542Bh, 5C2Bh	After configuration, reset the AGC module to start operation.

表 10. Registers Required for Using the RMS Power Detector Feature

8.3.8.4 GPIO AGC MUX

The GPIO pins can be used to control the NCO in wideband DDC mode or as alarm outputs for channel A and B. As shown in <u>8</u> 115, the GPIO pins can be configured through the SPI control to output the alarm from the peak power (1 bit), crossing detector (1 or 2 bit), faster overrange, or the RMS power output.

The programmable output MUX allows connecting any signal (including the NCO control) to any of the four GPIO pins. These pins can be configured as outputs (AGC alarm) or inputs (NCO control) through SPI programming.

OUTSEL GPIO[4:1]

图 115. GPIO Output MUX Implementation

8.3.9 Power-Down Mode

The ADC32RF82 provides a lot of configurability for the power-down mode. Power-down can be enabled using the PDN pin or the SPI register writes.

8.3.10 ADC Test Pattern

The ADC32RF82 provides several different options to output test patterns instead of the actual output data of the ADC in order to simplify the serial interface and system debug of the JESD204B digital interface link. 8 116 shows the output data path.

图 116. Test Pattern Generator Implementation

8.3.10.1 Digital Block

The ADC test pattern replaces the actual output data of the ADC. The test patterns listed in $\frac{11}{5}$ 11 are available when the DDC is enabled and located in register 37h of the decimation filter page. When programmed, the test patterns are output for each converter (M) stream. The number of converter streams per channel increases by 2 when complex (I, Q) output or dual-band DDC is selected. The test patterns can be synchronized for both ADC channels using the SYSREF signal.

Additionally, a 12-bit test pattern is also available.

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

www.ti.com.cn

注

The number of converters increases in dual-band DDC mode and with a complex output.

BIT	NAME	DEFAULT	DESCRIPTION
Address 37h, 38h (bits 7-0)	TEST PATTERN DDC1 I- DATA, TEST PATTERN DDC1 Q- DATA, TEST PATTERN DDC2 I- DATA, TEST PATTERN DDC2 Q- DATA,	0000	Test pattern outputs onl and Q stream of channel A and B when DDC option is chosen. 0000 = Normal operation using ADC output data 0001 = Outputs all 0s 0010 = Outputs all 1s 0011 = Outputs toggle pattern: output data are an alternating sequence of 1010101010101010 and 010101010101 0100 = Output digital ramp: output data increment by one LSB every clock cycle from code 0 to 65535 0110 = Single pattern: output data are a custom pattern 1 (75h and 76h) 0111 Double pattern: output data alternate between custom pattern 1 and custom pattern 2 1000 = Deskew pattern: output data are FFFh

表 11. Test Pattern Options (Register 37h and 38h in Decimation Filter Page)

8.3.10.2 Transport Layer

The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the LMFS parameters. Tail bits or 0's are added when needed. Alternatively, the JESD204B long transport layer test pattern shown in $\frac{1}{2}$ can be substituted instead of the ADC data with the JESD frame.

表 12. Transport Layer Test Mode EN (Register 01h)

BIT	NAME	DEFAULT	DESCRIPTION
4	TESTMODE EN	0	Generates long transport layer test pattern mode according to section 5.1.6.3 of the JESD204B specification. 0 = Test mode disabled 1 = Test mode disabled

8.3.10.3 Link Layer

The link layer contains the scrambler and the 8b, 10b encoding of any data passed on from the transport layer. Additionally, the link layer also handles the initial lane alignment sequence that can be manually restarted.

The link layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test patterns do not pass through the 8b, 10b encoder and contain the options listed in $\frac{1}{5}$ 13.

BIT	NAME	DEFAULT	DESCRIPTION					
7-5	LINK LAYER TESTMODE	000	Generates a pattern according to section 5.3.3.8.2 of the JESD204B document. 000 = Normal ADC data 001 = D21.5 (high-frequency jitter pattern) 010 = K28.5 (mixed-frequency jitter pattern) 011 = Repeat the initial lane alignment (generates a K28.5 character and repeats lane alignment sequences continuously) 100 = 12-octet random pattern (RPAT) jitter pattern					

表 13. Link Layer Test Mode (Register 03h)

Furthermore, a 2¹⁵ pseudo-random binary sequence (PRBS) can be enabled by setting up a custom test pattern (AAAAh) in the ADC section and running AAAAh through the 8b, 10b encoder with scrambling enabled.

8.4 Device Functional Modes

8.4.1 Device Configuration

The ADC32RF82 can be configured using a serial programming interface, as described in the *Serial Interface* section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down modes.

8.4.2 JESD204B Interface

The ADC32RF82 supports device subclass 1 with a maximum output data rate of 12.5 Gbps for each serial transmitter.

An external SYSREF signal is used to align all internal clock phases and the local multiframe clock to a specific sampling clock edge. This alignment allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty. 🛽 117 shows that the SYNCB input is used to control the JESD204B SerDes blocks.

Depending on the ADC sampling rate, the JESD204B output interface can be operated with one, two, or four lanes per ADC channel. The JESD204B setup and configuration of the frame assembly parameters is controlled through the SPI interface.

Copyright © 2016, Texas Instruments Incorporated

The JESD204B transmitter block shown in 图 118 consists of the transport layer, the data scrambler, and the link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format and manages if the ADC output data or test patterns are transmitted. The link layer performs the 8b, 10b data encoding as well as the synchronization and initial lane alignment using the SYNC input signal. Optionally, data from the transport layer can be scrambled.

Copyright © 2016, Texas Instruments Incorporated

图 118. JESD Digital Block Implementation

Device Functional Modes (接下页)

8.4.2.1 JESD204B Initial Lane Alignment (ILA)

The receiving device starts the initial lane alignment process by deasserting the SYNCB signal. The SYNCB signal can be issued using the SYNCB input pins or by setting the proper SPI bits. As shown in ℝ 119, when a logic low is detected on the SYNCB input, the ADC32RF82 starts transmitting comma (K28.5) characters to establish the code group synchronization.

When synchronization completes, the receiving device reasserts the SYNCB signal and the ADC32RF82 starts the initial lane alignment sequence with the next local multiframe clock boundary. The ADC32RF82 transmits four multiframes, each containing K frames (K is SPI programmable). Each of the multiframes contains the frame start and end symbols. The second multiframe also contains the JESD204 link configuration data.

8.4.2.2 JESD204B Frame Assembly

The JESD204B standard defines the following parameters:

- F is the number of octets per frame clock period
- L is the number of lanes per link
- M is the number of converters for the device
- S is the number of samples per frame

Device Functional Modes (接下页)

8.4.2.3 JESD204B Frame Assembly with Decimation (Single-Band DDC): Complex Output

表 14 lists the available JESD204B interface formats and valid ranges for the ADC32RF82 with decimation (single-band DDC) when using a complex output format. The ranges are limited by the SerDes line rate and the maximum ADC sample frequency. 表 15 shows the sample alignment on the different lanes.

DECIMATION SETTING (Complex)	NUMBER OF ACTIVE DDCS	L	М	F	S	PLL MODE	JESD MODE0	JESD MODE1	JESD MODE2	RATIO [f _{SerDes} / f _{CLK} (Gbps / GSPS)]
		8	4	1	1	20x	1	1	0	0.5
Divide by 4	1 nor chonnel	8	4	2	2	20x	1	0	0	2.5
Divide-by-4	i per channel	4	4	2	1	40x	0	0	1	E
		4	4	4	2	40x	2	0	0	5
		8	4	1	1	20x	1	1	0	1.67
Divido by 6	1 por channel	8	4	2	2	20x	1	0	0	1.07
Divide-by-6	i per channer	4	4	2	1	40x	0	0	1	2.22
		4	4	4	2	40x	2	0	0	5.55
Divido by 8	1 por channel	4	4	2	1	20x	1	0	0	2.5
Divide-by-6	i per channel	2	4	4	1	40x	2	0	0	5
Divido by 9	1 per channel	4	4	2	1	20x	1	0	0	2.22
Divide-by-9		2	4	4	1	40x	2	0	0	4.44
Divido by 10	1 per channel	4	4	2	1	20x	1	0	0	2
Divide-by-10		2	4	4	1	40x	2	0	0	4
Divido by 12	1 per channel	4	4	2	1	20x	1	0	0	1.67
Divide-by-12		2	4	4	1	40x	2	0	0	3.33
Divido by 16	1 per channel	4	4	2	1	20x	1	0	0	1.25
Divide-by-10		2	4	4	1	40x	2	0	0	2.5
Divido by 18	1 por channel	4	4	2	1	20x	1	0	0	1.11
Divide-by-18	i per channer	2	4	4	1	40x	2	0	0	2.22
Divido by 20	1 por channel	4	4	2	1	20x	1	0	0	1
Divide-by-20	i per channel	2	4	4	1	40x	2	0	0	2
Divide-by-24	1 per channel	2	4	4	1	20x	1	0	0	1.67
Divide-by-32	1 per channel	2	4	4	1	40x	2	0	0	1.25

表 14. JESD Mode Options: Single-Band Complex Output

表 15. JESD Sample Lane Alignments: Single-Band Complex Output

OUTPUT LANE	LMFS = 8411	LMFS	= 8422	LMFS 20	LMFS = 4421 20X		LMFS = 4421 40X		LMFS	= 4442			LMFS	= 2441	
DA0	Al _o [15:8]	Al _o [15:8]	Al ₀ [7:0]	Al ₀ [15:8]	Al ₀ [7:0]										
DA1	Al ₀ [7:0]	Al ₁ [15:8]	Al ₁ [7:0]	AQ ₀ [15:8]	AQ ₀ [7:0]	Al ₀ [15:8]	Al ₀ [7:0]	Al ₀ [15:8]	Al ₀ [7:0]	Al ₁ [15:8]	Al ₁ [7:0]	Al ₀ [15:8]	Al ₀ [7:0]	AQ ₀ [15:8]	AQ ₀ [7:0]
DA2	AQ ₀ [15:8]	AQ ₀ [15:8]	AQ ₀ [7:0]			AQ ₀ [15:8]	AQ ₀ [7:0]	AQ ₀ [15:8]	AQ ₀ [7:0]	AQ ₁ [15:8]	AQ ₁ [7:0]				
DA3	AQ ₀ [7:0]	AQ ₁ [15:8]	AQ ₁ [7:0]												
DB0	Bl ₀ [15:8]	Bl ₀ [15:8]	Bl ₀ [7:0]	Bl ₀ [15:8]	Bl ₀ [7:0]										
DB1	Bl ₀ [7:0]	Bl ₁ [15:8]	Bl ₁ [7:0]	BQ ₀ [15:8]	BQ ₀ [7:0]	Bl ₀ [15:8]	Bl ₀ [7:0]	Bl ₀ [15:8]	Bl ₀ [7:0]	Bl ₁ [15:8]	Bl ₁ [7:0]	Bl ₀ [15:8]	Bl ₀ [7:0]	BQ ₀ [15:8]	BQ ₀ [7:0]
DB2	BQ ₀ [15:8]	BQ ₀ [15:8	BQ ₀ [7:0]			BQ ₀ [15:8]	BQ ₀ [7:0]	BQ ₀ [15:8]	BQ ₀ [7:0]	BQ ₁ [15:8]	BQ ₁ [7:0]				
DB3	BQ ₀ [7:0]	BQ ₁ [15:8]	BQ ₁ [7:0]												

8.4.2.4 JESD204B Frame Assembly with Decimation (Single-Band DDC): Real Output

 $\frac{16}{10}$ lists the available JESD204B formats and valid ranges for the ADC32RF82 with decimation (single-band DDC) when using real output format. The ranges are limited by the SerDes line rate and the maximum ADC sample frequency. $\frac{1}{5}$ 17 shows the sample alignment on the different lanes.

表 16. JESD Mode Options: Single-Band Real Output (Wide Bandwidth)

DECIMATION SETTING (Complex)	NUMBER OF ACTIVE DDCS	L	м	F	S	PLL MODE	JESD MODE0	JESD MODE1	JESD MODE2	RATIO [f _{SerDes} / f _{CLK} (Gbps / GSPS)]	
		8	2	2	4	20x	1	0	0	2.5	
Divide-by-4	1 per channel	4	2	4	4	40x	2	0	0	5	
		4	2	1	1	40x	0	0	1		
		8	2	2	4	20x	1	0	0	1.67	
Divide-by-6 (Divide-by-3 real)	1 per channel	4	2	4	4	40x	2	0	0	0.00	
		4	2	1	1	40x	0	0	1	- 3.33	

表 17. JESD Sample Lane Alignment: Single-Band Real Output (Wide Bandwidth)

OUTPUT LANE	LMFS	= 8224		LMFS = 4244						
DA0	A ₀ [15:8]	A ₀ [7:0]								
DA1	A ₁ [15:8]	A ₁ [7:0]	A ₀ [15:8]	A ₀ [7:0]	A ₁ [15:8]	A ₁ [7:0]	A ₀ [15:8]			
DA2	A ₂ [15:8]	A ₂ [7:0]	A ₂ [15:8]	A ₂ [7:0]	A ₃ [15:8]	A ₃ [7:0]	A ₀ [7:0]			
DA3	A ₃ [15:8]	A ₃ [7:0]								
DB0	B ₀ [15:8]	B ₀ [7:0]								
DB1	B ₁ [15:8]	B ₁ [7:0]	B ₀ [15:8]	B ₀ [7:0]	B ₁ [15:8]	B ₁ [7:0]	B ₀ [15:8]			
DB2	B ₂ [15:8]	B ₂ [7:0]	B ₀ [15:8]	B ₂ [7:0]	B ₃ [15:8]	B ₃ [7:0]	B ₀ [7:0]			
DB3	B ₃ [15:8]	B ₃ [7:0]								

www.ti.com.cn

8.4.2.5 JESD204B Frame Assembly with Decimation (Single-Band DDC): Real Output

表 18 lists the available JESD204B formats and valid ranges for the ADC32RF82 with decimation (dual-band DDC) when using a complex output format. 表 19 shows the sample alignment on the different lanes.

DECIMATION SETTING (Complex)	NUMBER OF ACTIVE DDCS	L	Μ	F	S	PLL MODE	JESD MODE0	JESD MODE1	JESD MODE2	RATIO [f _{SerDes} / f _{CLK} (Gbps / GSPS)]	
		4	2	1	1	20x	1	1	0	2.5	
Divide-by-8	1 nor channel	4	2	2	2	20x	1	0	0	2.5	
(Divide-by-4 real)	i per channel	2	2	2	1	40x	0	0	1	E	
		2	2	4	2	40x	2	0	0	5	
		4	2	1	1	20x	1	1	0	2.22	
Divide-by-9	1 nor channel	4	2	2	2	20x	1	0	0	2.22	
(Divide-by-4.5 real)	i per channel	2	2	2	1	40x	0	0	1	4.44	
		2	2	4	2	40x	2	0	0	4.44	
		4	2	1	1	20x	1	1	0	0	
Divide-by-10	4	4	2	2	2	20x	1	0	0	2	
(Divide-by-5 real)	1 per channel	2	2	2	1	40x	0	0	1	4	
		2	2	4	2	40x	2	0	0	4	
	1 per channel	4	2	1	1	20x	1	1	0	1.67	
Divide-by-12		4	2	2	2	20x	1	0	0	1.07	
(Divide-by-6 real)		2	2	2	1	40x	0	0	1	3 33	
		2	2	4	2	40x	2	0	0	3.33	
		4	2	1	1	20x	1	1	0	1.25	
Divide-by-16	1 per abannal	4	2	2	2	20x	1	0	0	1.25	
(Divide-by-8 real)	1 per channel	2	2	2	1	40x	0	0	1	0.5	
		2	2	4	2	40x	2	0	0	2.5	
		4	2	1	1	20x	1	1	0	1 11	
Divide-by-18	1 per abannal	4	2	2	2	20x	1	0	0	1.11	
(Divide-by-9 real)	i per channei	2	2	2	1	40x	0	0	1	2.22	
		2	2	4	2	40x	2	0	0	2.22	
		4	2	1	1	20x	1	1	0	1	
Divide-by-20	1 per abannal	4	2	2	2	20x	1	0	0	I	
(Divide-by-10 real)	i per channer	2	2	2	1	40x	0	0	1	0	
		2	2	4	2	40x	2	0	0	2	
Divide-by-24	1 nor channel	2	2	2	1	40x	0	0	1	1.67	
(Divide-by-12 real)	r per channel	2	2	4	2	40x	2	0	0	1.07	
Divide-by-32	1 por channel	2	2	2	1	40x	0	0	1	1.05	
(Divide-by-32 (Divide-by-16 real)	1 per channel	2	2	4	2	40x	2	0	0	1.20	

表 18. JESD Mode Options: Single-Band Real Output

表 19. JESD Sample Lane Assignment: Single-Band Real Output

OUTPUT LANE	LMFS = 4211	LMFS = 4222		LMFS = 2221		LMFS = 2242					
DA0	A ₀ [15:8]	A ₀ [15:8]	A ₀ [7:0]								
DA1	A ₀ [7:0]	A ₁ [15:8]	A ₁ [7:0]	A ₀ [15:8]	A ₀ [7:0]	A ₀ [15:8]	A ₀ [7:0]	A ₁ [15:8]	A ₁ [7:0]		
DB0	B ₀ [15:8]	B ₀ [15:8]	B ₀ [7:0]								
DB1	B ₀ [7:0]	B ₁ [15:8]	B ₁ [7:0]	B ₀ [15:8]	B ₀ [7:0]	B ₀ [15:8]	B ₀ [7:0]	B ₁ [15:8]	B ₁ [7:0]		

DECIMATION SETTING (Complex)	NUMBER OF ACTIVE DDCS	L	м	F	S	PLL MODE	JESD MODE0	JESD MODE1	JESD MODE2	RATIO [f _{SerDes} / f _{CLK} (Gbps / GSPS)]
Divide by 8	2 par abannal	8	8	2	1	20x	1	0	0	2.5
Divide-by-6	2 per channer	4	8	4	1	40x	2	0	0	5
Divide by 0	2 nor chonnel	8	8	2	1	20x	1	0	0	2.22
Divide-by-9	2 per channer	4	8	4	1	40x	2	0	0	4.44
Divide hu 40	0 man akan al	8	8	2	1	20x	1	0	0	2
Divide-by-10	2 per channel	4	8	4	1	40x	2	0	0	4
Divide by 40	0 and the second	8	8	2	1	20x	1	0	0	1.67
Divide-by-12	2 per channel	4	8	4	1	40x	2	0	0	3.33
Divide hu 40	0 and the second	8	8	2	1	20x	1	0	0	1.25
Divide-by-16	2 per channel	4	8	4	1	40x	2	0	0	2.5
Divide by 40	0 and the second	8	8	2	1	20x	1	0	0	1.11
Divide-by-18	2 per channel	4	8	4	1	40x	2	0	0	2.22
Divide hu 00	0 man akan al	8	8	2	1	20x	1	0	0	1
Divide-by-20	2 per channel	4	8	4	1	40x	2	0	0	2
Divide-by-24	2 per channel	4	8	4	1	40x	2	0	0	1.67
Divide-by-32	2 per channel	4	8	4	1	40x	2	0	0	1.25

表 20 lists the available JESD204B formats and valid ranges for the ADC32RF82 with decimation (dual-band DDC) when using a complex output format. The ranges are limited by the SerDes line rate and the maximum

表 20. JESD Mode Options: Dual-Band Complex Output

8.4.2.6 JESD204B Frame Assembly with Decimation (Dual-Band DDC): Complex Output

ADC sample frequency. 表 21 shows the sample alignment on the different lanes.

表 21. JESD Sample Lane Assignment: Dual-Band Complex Output⁽¹⁾

OUTPUT LANE	LMFS	= 8821		LMFS	= 4841	
DA0	A1 ₀ [15:8]	A1 ₀ [7:0]				
DA1	A1Q ₀ [15:8]	A1Q ₀ [7:0]	A1I ₀ [15:8]	A1I ₀ [7:0]	A1Q ₀ [15:8]	A1Q ₀ [7:0]
DA2	A2I ₀ [15:8]	A2I ₀ [7:0]	A2I ₀ [15:8]	A2I ₀ [7:0]	A2Q ₀ [15:8]	A2Q ₀ [7:0]
DA3	A2Q ₀ [15:8]	A2Q ₀ [7:0]				
DB0	B1I ₀ [15:8]	B1I ₀ [7:0]				
DB1	B1Q ₀ [15:8]	B1Q ₀ [7:0]	B1I ₀ [15:8]	B1I ₀ [7:0]	B1Q ₀ [15:8]	B1Q ₀ [7:0]
DB2	B2I ₀ [15:8]	B2I ₀ [7:0]	B2I ₀ [15:8]	B2I ₀ [7:0]	B2Q ₀ [15:8]	B2Q ₀ [7:0]
DB3	B2Q ₀ [15:8]	B2Q ₀ [7:0]				

(1) Blue and green shading indicates the two bands for channel A; yellow and orange shading indicates the two bands for channel B.

www.ti.com.cn

8.4.2.7 JESD204B Frame Assembly with Decimation (Dual-Band DDC): Real Output

表 22 lists the available JESD204B formats and valid ranges for the ADC32RF82 with decimation (dual-band DDC) when using real output format. The ranges are limited by the SerDes line rate and the maximum ADC sample frequency. 表 23 shows the sample alignment on the different lanes.

DECIMATION SETTING (Complex)	NUMBER OF ACTIVE DDCS	L	М	F	S	PLL MODE	JESD MODE0	JESD MODE1	JESD MODE2	RATIO [f _{SerDes} / f _{CLK} (Gbps / GSPS)]
		8	4	1	1	20x	1	1	0	2.5
Divide-by-8	2 por channel	8	4	2	2	20x	1	0	0	2.5
(Divide-by-4 real)		4	4	2	1	40x	0	0	1	5
		4	4	4	2	40x	2	0	0	5
		8	4	1	1	20x	1	1	0	2.22
Divide-by-9	2 per channel	8	4	2	2	20x	1	0	0	2.22
(Divide-by-4.5 real)	2 per channel	4	4	2	1	40x	0	0	1	1 11
		4	4	4	2	40x	2	0	0	4.44
		8	4	1	1	20x	1	1	0	2
Divide-by-10	2 por channel	8	4	2	2	20x	1	0	0	2
(Divide-by-5 real)	2 per channel	4	4	2	1	40x	0	0	1	4
		4	4	4	2	40x	2	0	0	4
	2 per channel	8	4	1	1	20x	1	1	0	1.67
Divide-by-12		8	4	2	2	20x	1	0	0	1.07
(Divide-by-6 real)		4	4	2	1	40x	0	0	1	2.22
		4	4	4	2	40x	2	0	0	3.33
	2 per channel	8	4	1	1	20x	1	1	0	1.05
Divide-by-16		8	4	2	2	20x	1	0	0	1.25
(Divide-by-8 real)		4	4	2	1	40x	0	0	1	2.5
		4	4	4	2	40x	2	0	0	2.5
		8	4	1	1	20x	1	1	0	1 11
Divide-by-18	2 per obennel	8	4	2	2	20x	1	0	0	1.11
(Divide-by-9 real)	2 per channer	4	4	2	1	40x	0	0	1	2.22
		4	4	4	2	40x	2	0	0	2.22
		8	4	1	1	20x	1	1	0	1
Divide-by-20	0 per channel	8	4	2	2	20x	1	0	0	Ι
(Divide-by-10 real)	2 per channel	4	4	2	1	40x	0	0	1	0
		4	4	4	2	40x	2	0	0	2
Divide-by-24	2 por oboppol	4	4	2	1	40x	0	0	1	1.67
(Divide-by-12 real)		4	4	4	2	40x	2	0	0	1.07
Divide-by-32	2 por channel	4	4	2	1	40x	0	0	1	1.25
(Divide-by-16 real)	2 per channel	4	4	4	2	40x	2	0	0	1.20

表 22. JESD Mode Options: Dual-Band Real Output

表 23. JESD Sample Lane Assignment: Dual-Band Complex Output⁽¹⁾

OUTPUT LANE	LMFS = 8411	LMFS	= 8422	LMFS = 4421		LMFS = 4442				
DA0	A1 ₀ [15:8]	A1 ₀ [15:8]	A1 ₀ [7:0]							
DA1	A1 ₀ [7:0]	A1 ₁ [15:8]	A1 ₁ [7:0]	A1 ₀ [15:8]	A1 ₀ [7:0]	A1 ₀ [15:8]	A1 ₀ [7:0]	A1 ₁ [15:8]	A1 ₁ [7:0]	
DA2	A2 ₀ [15:8]	A2 ₀ [15:8]	A2 ₀ [7:0]	A2 ₀ [15:8]	A2 ₀ [7:0]	A2 ₀ [15:8]	A2 ₀ [7:0]	A2 ₁ [15:8]	A2 ₁ [7:0]	
DA3	A2 ₀ [7:0]	A2 ₁ [15:8]	A2 ₁ [7:0]							
DB0	B1 ₀ [15:8]	B1 ₀ [15:8]	B1 ₀ [7:0]							
DB1	B1 ₀ [7:0]	B1 ₁ [15:8]	B1 ₁ [7:0]	B1 ₀ [15:8]	B1 ₀ [7:0]	B1 ₀ [15:8]	B1 ₀ [7:0]	B1 ₁ [15:8]	B1 ₁ [7:0]	
DB2	B2 ₀ [15:8]	B2 ₀ [15:8]	B2 ₀ [7:0]	B2 ₀ [15:8]	B2 ₀ [7:0]	B2 ₀ [15:8]	B2 ₀ [7:0]	B2 ₁ [15:8]	B2 ₁ [7:0]	
DB3	B2 ₀ [7:0]	B2 ₁ [15:8]	B2 ₁ [7:0]							

(1) Blue and green shading indicates the two bands for channel A; yellow and orange shading indicates the two bands for channel B.

8.4.3 Serial Interface

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins. Serially shifting bits into the device is enabled when SEN is low. As shown in \mathbb{E} 120, SDIN serial data are latched at every SCLK rising edge when SEN is active (low). The interface can function as shown in $\frac{1}{8}$ 24 with SCLK frequencies from 20 MHz down to low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.

The SPI access uses 24 bits consisting of eight register data bits, 12 register address bits, and four special bits to distinguish between read/write, page and register, and individual channel access, as described in 表 25.

图 120. SPI Timing Diagram

表 24. SPI Timing Information	on
------------------------------	----

		MIN	TYP	MAX	UNIT
f _{SCLK}	SCLK frequency (equal to 1 / t _{SCLK})	1		20	MHz
t _{SLOADS}	SEN to SCLK setup time	50			ns
t _{SLOADH}	SCLK to SEN hold time	50			ns
t _{DSU}	SDIN setup time	10			ns
t _{DH}	SDIN hold time	10			ns
t _{SDOUT}	Delay between SCLK falling edge to SDOUT		10		ns

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

www.ti.com.cn

表 25. SPI Input Description

SPI BIT	DESCRIPTION	OPTIONS
R/W bit	Read/write bit	0 = SPI write 1 = SPI read back
M bit	SPI bank access	0 = Analog SPI bank (master) 1 = All digital SPI banks (main digital, interleaving, decimation filter, JESD digital, and so forth)
P bit	JESD page selection bit	0 = Page access 1 = Register access
CH bit	SPI access for a specific channel of the JESD SPI bank	0 = Channel A 1 = Channel B
ADDR[11:0]	SPI address bits	—
DATA[7:0]	SPI data bits	—

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

8.4.3.1 Serial Register Write: Analog Bank

The internal register of the ADC32RF82 analog bank (图 122) can be programmed by:

- 1. Driving the SEN pin low.
- Initiating a serial interface cycle selecting the page address of the register whose content must be written. To select the master page: write address 0012h with 04h. To select the ADC page: write address 0011h with FFh.
- 3. Writing the register content. When a page is selected, multiple registers located in the same page can be programmed.

图 122. SPI Write Timing Diagram for the Analog Bank

8.4.3.2 Serial Register Readout: Analog Bank

Contents of the registers located in the two pages of the analog bank (图 123) can be readback by:

- 1. Driving the SEN pin low.
- 2. Selecting the page address of the register whose content must be read. Master page: write address 0012h with 04h. ADC page: write address 0011h with FFh.
- 3. Setting the R/W bit to 1 and writing the address to be read back.
- 4. Reading back the register content on the SDOUT pin. When a page is selected, the contents of multiple registers located in same page can be readback.

8.4.3.3 Serial Register Write: Digital Bank

The digital bank contains seven pages (Offset Corrector Page for channel A and B; Digital Gain Page for channel A and B; Main digital Page for channel A and B; and JESD Digital Page). 图 124 shows the timing for the individual page selection. The registers located in the pages of the digital bank can be programmed by:

- 1. Driving the SEN pin low.
- 2. Setting the M bit to 1 and specifying the page with with the desired register. There are seven pages in Digital Bank. These pages can be selected by appropriately programming register bits DIGITAL BANK PAGE SEL, located in addresses 002h, 003h, and 004h, using three consecutive SPI cycles. Addressing in a SPI cycle begins with 4xxx when selecting a page from digital bank because the M bit must be set to 1.
 - To select the offset corrector page channel A: write address 4004h with 61h, 4003h with 00h, and 4002h with 00h.
 - To select the offset corrector page channel B: write address 4004h with 61h, 4003h with 01h, and 4002h with 00h.
 - To select the digital gain page channel A: write address 4004h with 61h, 4003h with 00h, and 4002h with 05h.
 - To select the digital gain page channel B: write address 4004h with 61h, 4003h with 01h, and 4002h with 05h.
 - To select the main digital page channel A: write address 4004h with 68h, 4003h with 00h, and 4002h with 00h.
 - To select the main digital page channel B: write address 4004h with 68h, 4003h with 01h, and 4002h with 00h.
 - To select the JESD digital page: write address 4004h with 69h, 4003h with 00h, and 4002h with 00h.

图 124. SPI Write Timing Diagram for Digital Bank Page Selection

TEXAS INSTRUMENTS

www.ti.com.cn

3. Writing into the desired register by setting both the M bit and P bit to 1. Write register content. When a page is selected, multiple writes into the same page can be done. Addressing in an SPI cycle begins with 6xxx, as shown in 图 125, when selecting a page from the digital bank because the M bit must be set to 1.

Note that the JESD digital page is common for both channels. The CH bit can be used to distinguish between two channels when programming registers in the JESD digital page. When CH = 0, registers are programmed for channel B; when CH = 1, registers are programmed for channel A. Thus, an SPI cycle to program registers for channel B begins with 6xxx and channel A begins with 7xxx.

版权 © 2017, Texas Instruments Incorporated

8.4.3.4 Serial Register Readout: Digital Bank

Readback of the register in one of the digital banks (as shown in 图 126) can be accomplished by:

- 1. Driving the SEN pin low.
- 2. Selecting the page in the digital page: follow step 2 in the Serial Register Write: Digital Bank section.
- 3. Set the R/W, M, and P bits to 1, select channel A or channel B, and write the address to be read back.
 - JESD digital page: use the CH bit to select channel B (CH = 0) or channel A (CH = 1).
- 4. Read back the register content on the SDOUT pin. When a page is selected, multiple read backs from the same page can be done.

8.4.3.5 Serial Register Write: Decimation Filter and Power Detector Pages

The decimation filter and power detector pages are special pages that accept direct addressing. The sampling clock and SYSREF signal are required to properly configure the decimation settings. Registers located in these pages can be programmed in one SPI cycle (图 127).

- 1. Drive the SEN pin low.
- Directly write to the decimation filter or power detector pages. To program registers in these pages, set M = 1 and CH = 1. Additionally, address bit A[10] selects the decimation filter page (A[10] = 0) or the power detector page (A[10] = 1). Address bit A[11] selects channel A (A[11] = 0) or channel B (A[11] = 1).
 - Decimation filter page: write address 50xxh for channel A or 58xxh for channel B.
 - Power detector page: write address 54xxh for channel A or 5Cxxh for channel B.

Example: Writing address 5001h with 02h selects the decimation filter page for channel A and programs decimation factor of divide-by-8 (complex output).

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

8.5 Register Maps

The ADC32RF82 contains two main SPI banks. The analog SPI bank provides access to the ADC core and the digital SPI bank controls the digital blocks (including the serial JESD interface). Figure 128 and Figure 129 provide a conceptual view of the SPI registers inside the ADC32RF82. The analog SPI bank contains the master and ADC pages. The digital SPI bank is divided into multiple pages (the main digital, digital gain, decimation filter, JESD digital, and power detector pages).

- (1) In general, SPI writes are completed in two steps. The first step is to access the necessary page. The second step is to program the desired register in that page. When a page is accessed, the registers in that page can be programmed multiple times.
- (2) Registers in the decimation filter page and the power detector page can be directly programmed in one SPI cycle.
- (3) The CH bit is a *don't care* bit and is recommended to be kept at 0.

Figure 128. SPI Registers, Two-Step Addressing

- (1) Registers in the decimation filter page and the power detector page can be directly programmed in one SPI cycle.
- (2) To program registers in the decimation filter page, aet M = 1, CH = 1, A[10] = 0, and A[11] = 0 or 1 for channel A or B. Addressing begins at 50xx for channel A and 58xx for channel B.
- (3) To program registers in power detector page, set M = 1, CH = 1, A[10] = 1, and A[11] = 0 or 1 for channel A or B. Addressing begins at 54xx for channel A and 5Cxx for channel B.

Figure 129. SPI Registers: Direct Addressing

ZHCSGR4-SEPTEMBER 2017

Register Maps (continued)

Table 26 lists the register map for the ADC32RF82.

			Ta	able 26. Register	Мар					
REGISTER ADDRESS A[11:0] (Hex)	REGISTER DATA									
	7	6	5	4	3	2	1	0		
GENERAL REGIST	ERS	l l					I			
000	RESET	0	0	0	0	0	0	RESET		
002	DIGITAL BANK PAGE SEL[7:0]									
003	DIGITAL BANK PAGE SEL[15:8]									
004	DIGITAL BANK PAGE SEL[23:16]									
010	0	0	0	0	0	0	0	3 or 4 WIRE		
011				ADC PA	GE SEL					
012	0	0	0	0	0	MASTER PAGE SEL	0	0		
MASTER PAGE (M	= 0)									
020	0	0	0	PDN SYSREF	0	0	PDN CHB	GLOBAL PDN		
032	0	0	INCR CM IMPEDANCE	0	0	0	0	0		
039	0	ALWAYS WRITE 1	0	ALWAYS WRITE 1	0	0	PDN CHB EN	SYNC TERM DIS		
03C	0	SYSREF DEL EN	0	0	0	0	0 SYSREF DEL[4:3]			
03D	0	0	0	0	0	JESD OUTPUT SWING				
05A		SYSREF DEL[2:0]		0	0	0 0 0				
057	0	0	0	SEL SYSREF REG	ASSERT SYSREF REG	0	0	0		
058	0	0	SYNCB POL	0	0	0	0	0		
ADC PAGE (FFh, N	1 = 0)									
03F	0	0	0	0	0	SLOW SP EN1	0	0		
042	0	0	0	SLOW SP EN2	0	0	1	1		
Offset Corr Page C	hannel A (610000h,	M = 1)								
68	FREEZE OFFSET CORR	ALWAYS WRITE 1	0	0	0	DIS OFFSET CORR	ALWAYS WRITE 1	0		
Offset Corr Page C	hannel B (610100h,	M = 1)								
68	FREEZE OFFSET CORR	ALWAYS WRITE 1	0	0	0	DIS OFFSET CORR	ALWAYS WRITE 1	0		
Digital Gain Page 0	Channel A (610005, M	/I = 1)								
0A6	0	0	0	0		DIGITA	LGAIN			

Copyright © 2017, Texas Instruments Incorporated

Register Maps (continued)

REGISTER	REGISTER DATA								
ADDRESS A[11:0] (Hex)	7	6	5	4	3	2	1	0	
Digital Gain Page C	Channel B (610105, N	/I = 1)							
0A6	0 0 0 0 DIGITAL GAIN								
Main Digital Page C	Channel A (680000h,	M = 1)		-					
000	0	0	0	0	0	0	0	DIG CORE RESET GBL	
0A2	0	0	0	0	NQ ZONE EN		NYQUIST ZONE		
0A5		Sampling Frequency for ChA and ChB							
0A9	0	0	0	0	Sampling Frequency Enable	0	1	1	
0B0		Band1 Lower-Edge Frequency LSB Setting							
0B1	0	0	0		Band1 Low	er-Edge Frequency N	ISB Setting		
0B2				Band1 Upper-Edge F	requency LSB Setting				
0B3	0	0	Band1 Frequency Range Enable	Band1 Upper-Edge Frequency MSB Setting					
0B4		Band2 Lower-Edge Frequency LSB Setting							
0B5	0	0	0		Band2 Low	er-Edge Frequency N	ISB Setting		
0B6		Band2 Upper-Edge Frequency LSB Setting							
0B7	0	0	Band2 Frequency Range Enable	Band2 Upper-Edge Frequency MSB Setting					
0B8		Band3 Lower-Edge Frequency LSB Setting							
0B9	0	0	0	Band3 Lower-Edge Frequency MSB Setting					
0BA				Band3 Upper-Edge F	requency LSB Setting				
0BB	0	0	Band3 Frequency Range Enable		Band3 Upp	er-Edge Frequency N	ISB Setting		
Main Digital Page C	Channel B (680001h,	M = 1)		-					
000	0	0	0	0	0	0	0	0	
0A2	0	0	0	0	NQ ZONE EN		NYQUIST ZONE		
0B0				Band1 Lower-Edge F	requency LSB Setting				
0B1	0	0	0		Band1 Low	er-Edge Frequency N	ISB Setting		
0B2				Band1 Upper-Edge F	requency LSB Setting				
0B3	0	0	Band1 Frequency Range Enable	Band1 Upper-Edge Frequency MSB Setting					
0B4		Band2 Lower-Edge Frequency LSB Setting							

Table 26. Register Map (continued)

ADC32RF82 ZHCSGR4-SEPTEMBER 2017

Register Maps (continued)

REGISTER	REGISTER DATA										
ADDRESS A[11:0] (Hex)	7	6	5	4	3	2	1	0			
0B5	0	0	0	Band2 Lower-Edge Frequency MSB Setting							
0B6				3and2 Upper-Edge Frequency LSB Setting							
0B7	0	0	Band2 Frequency Range Enable	Band2 Upper-Edge Frequency MSB Setting							
0B8				Band3 Lower-Edge Frequency LSB Setting							
0B9	0	0	0	Band3 Lower-Edge Frequency MSB Setting							
0BA				Band3 Upper-Edge F	requency LSB Setting	Į					
0BB	0	0	Band3 Frequency Range Enable	Band3 Upper-Edge Frequency MSB Setting							
JESD DIGITAL PAG	E (690000h, M = 1)										
001	CTRL K	0	0	TESTMODE EN	0	LANE ALIGN	FRAME ALIGN	TX LINK DIS			
002	SYNC REG	SYNC REG EN	0	0	12BIT	MODE	JESD I	NODE0			
003	LII	NK LAYER TESTMOI	DE	LINK LAY RPAT	LMFC MASK RESET	JESD MODE1	JESD MODE2	RAMP 12BIT			
004	0	0	0	0	0	0	REL IL	REL ILA SEQ			
006	SCRAMBLE EN	0	0	0	0	0	0	0			
007	0	0	0		FRAM	IES PER MULTIFRAM	ИЕ (K)				
016	0		40X MODE	0 0 0 0							
017	0	0	0	0	LANE0 POL	LANE1 POL	LANE2 POL	LANE3 POL			
032			SEL EMP	P LANE 0			0	0			
033			SEL EMP	P LANE 1			0	0			
034			SEL EMF	P LANE 2			0	0			
035			SEL EMF	P LANE 3			0	0			
036	0	CMOS SYNCB	0	0	0	0	0	0			
037	0	0	0	0 0 0 PLL MODE							
03C	0	0	0	0	0	0	0	EN CMOS SYNCB			
03E	0	MASK CLKDIV SYSREF	MASK NCO SYSREF	0	0	0	0	0			

Table 26. Register Map (continued)

Register Maps (continued)

REGISTER ADDRESS A[11:0] (Hex)	REGISTER DATA										
	7	6	5	4	3	2	1	0			
DECIMATION FILTE	ER PAGE (Direct Add	dressing, 16-Bit Add	ress, 5000h for Char	nnel A and 5800h fo	r Channel B)						
000	0	0	0	0	0	0	0	DDC EN			
001	0	0	0	0		DECIM FACTOR					
002	0	0	0	0	0	0	0	DUAL BAND EN			
005	0	0	0	0	0	0	0	REAL OUT EN			
006	0	0	0	0	0	0	0	DDC MUX			
007				DDC0 N	CO1 LSB						
008				DDC0 NO	CO1 MSB						
009				DDC0 N	CO2 LSB						
00A				DDC0 NO	CO2 MSB						
00B				DDC0 N	CO3 LSB						
00C		DDC0 NCO3 MSB									
00D		DDC1 NCO4 LSB									
00E				DDC1 NO	CO4 MSB						
00F	0	0	0	0	0	0	0	NCO SEL PIN			
010	0	0	0	0	0	0	NCO	SEL			
011	0	0	0	0	0	0	LMFC RES	SET MODE			
014	0	0	0	0	0	0	0	DDC0 6DB GAIN			
016	0	0	0	0	0	0	0	DDC1 6DB GAIN			
01E	0		DDC DET LAT	-	0	0	0	0			
01F	0	0	0	0	0	0	0	WBF 6DB GAIN			
033				CUSTOM PA	TTERN1[7:0]						
034				CUSTOM PA	TTERN1[15:8]						
035				CUSTOM PA	TTERN2[7:0]						
036				CUSTOM PA	TTERN2[15:8]						
037		TEST PATTER	N DDC1 Q-DATA			TEST PATTER	N DDC1 I-DATA				
038		TEST PATTERN DDC2 Q-DATA TEST PATTERN DDC2 I -DATA									
039	0	0	0	0	0	0	0	USE COMMON TEST PATTERN			
03A	0	0	0	0	0	0	TEST PAT RES	TP RES EN			

Table 26. Register Map (continued)

Register Maps (continued)

				<u> </u>						
REGISTER	REGISTER DATA									
ADDRESS A[11:0] (Hex)	7	6	5	4	3	2	1	0		
POWER DETECTOR PAGE (Direct Addressing, 16-Bit Address, 5400h for Channel A and 5C00h for Channel B)										
000	0	0	0	0	0	0	0	PKDET EN		
001	BLKPKDET [7:0]									
002	BLKPKDET [15:8]									
003	0	0	0	0	0	0	0	BLKPKDET [16]		
007	BLKTHHH									
008	BLKTHHL									
009				BLł	THLH					
00A				BLł	KTHLL					
00B				DWE	ELL[7:0]					
00C				DWE	LL[15:8]					
00D	0	0	0	0	0	0	0	FILT0LPSEL		
00E	0 0 0 0 TIMECONST									
00F	FILOTHH[7:0]									
010	FIL0THH[15:8]									
011				FIL0 ⁻	THL[7:0]					
012				FILOT	HL[15:8]					
013	0	0	0	0	0	0	0	IIR0 2BIT EN		
016				FIL17	THH[7:0]					
017				FIL1T	HH[15:8]					
018				FIL1 ⁻	THL[7:0]					
019				FIL1T	HL[15:8]		-			
01A	0	0	0	0	0	0	0	IIR1 2BIT EN		
01D				DWEL	LIIR[7:0]					
01E				DWEL	LIIR[15:8]					
020	0	0	0	0	0	0	0	IIR0 2BIT EN		
021	0	0	0			PWRDETACCU				
022				PWRD	ETH[7:0]					
023				PWRD	ETH[15:8]					
024				PWRD	DETL[7:0]					
025	PWRDETL[15:8]									

Table 26. Register Map (continued)

Copyright © 2017, Texas Instruments Incorporated

Register Maps (continued)

REGISTER	REGISTER DATA								
ADDRESS A[11:0] (Hex)	7	6	5	4	3	2	1	0	
027	0	0	0	0	0	0	0	RMS 2BIT EN	
02B	0	0	0	RESET AGC	0	0	0	0	
032	OUTSEL GPIO4								
033		OUTSEL GPIO1							
034		OUTSEL GPIO3							
035	OUTSEL GPIO2								
037	0	0	0	0	IODIR GPIO2	IODIR GPIO3	IODIR GPIO1	IODIR GPIO4	
038	0	0	INS	SEL1	0	0	INS	EL0	

Table 26. Register Map (continued)

8.5.1 Example Register Writes

This section provides three different example register writes. Table 27 describes a global power-down register write, Table 28 describes the register writes when the scrambler is enabled, and Table 29 describes the register writes for 8x decimation for channels A and B (complex output, 1 DDC mode) with the NCO set to 1.8 GHz ($f_s = 3$ GSPS) and the JESD format configured to LMFS = 4421.

Table 27. Global Power-Down

ADDRESS	DATA	COMMENT			
12h	04h	Set the master page			
20h	01h	Set the global power-down			

Table 28. Scrambler Enable

ADDRESS	DATA	COMMENT	
4004h	69h	Select the digital IESD page	
4003h	00h	elect the digital JESD page	
6006h	80h	Scrambler enable, channel A	
7006h	80h	Scrambler enable, channel B	

Table 29. 8x Decimation for Channel A and B

ADDRESS	DATA	COMMENT
4004h	68h	Colort the main digital name for abannel A
4003h	00h	Select the main digital page for channel A
6000h	01h	Issue a digital reset for channel A
6000h	00h	Clear the digital for reset channel A
4003h	01h	Select the main digital page for channel B
6000h	01h	Issue a digital reset for channel B
6000h	00h	Clear the digital reset for channel B
4004h	69h	
4003h	00h	Select the digital JESD page
6002h	01h	Set JESD MODE0 = 1, channel A
7002h	01h	Set JESD MODE0 = 1, channel B
5000h	01h	Enable the DDC, channel A
5001h	02h	Set decimation to 8x complex
5007h	9Ah	Set the LSB of DDC0, NCO1 to 9Ah (f_{NCO} = 1.8 GHz, f_{S} = 3 GSPS)
5008h	99h	Set the MSB of DDC0, NCO1 to 99h (f_{NCO} = 1.8 GHz, f_{S} = 3 GSPS)
5014h	01h	Enable the 6-dB digital gain of DDC0
5801h	02h	Set decimation to 8x complex
5807h	9Ah	Set the LSB of DDC0, NCO1 to 9Ah (f_{NCO} = 1.8 GHz, f_{S} = 3 GSPS)
5808h	99h	Set the MSB of DDC0, NCO1 to 99h (f_{NCO} = 1.8 GHz, f_{S} = 3 GSPS)
5814h	01h	Enable the 6-dB digital gain of DDC0

8.5.2 Register Descriptions

Table 30 lists the access codes for the ADC32RF82 registers.

Table 30	ADC32RF82	Access	Туре	Codes
----------	-----------	--------	------	-------

Access Type	Code	Description
R	R	Read
R-W	R/W	Read or Write
W	W	Write
-n		Value after reset or the default value

8.5.2.1 General Registers

8.5.2.1.1 Register 000h (address = 000h), General Registers

Figure 130. Register 000h

7	6	5	4	3 2		1	0
RESET	0	0	0	0	0	0	RESET
R/W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h

Table 31. Register 000h Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESET	R/W	0h	0 = Normal operation 1 = Internal software reset, clears back to 0
6-1	0	W	0h	Must write 0
0	RESET	R/W	0h	0 = Normal operation ⁽¹⁾ 1 = Internal software reset, clears back to 0

(1) Both bits (7, 0) must be set simultaneously to perform a reset.

8.5.2.1.2 Register 002h (address = 002h), General Registers

Figure 131. Register 002h

7	6	5	4	3	2	1	0
DIGITAL BANK PAGE SEL[7:0]							
R/W-0h							

Table 32. Register 002h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DIGITAL BANK PAGE SEL[7:0]	R/W	0h	Program the JESD BANK PAGE SEL[23:0] bits to access the desired page in the JESD bank. 680000h = Main digital page CHA selected 680100h = Main digital page CHB selected 610000h = Digital function page CHA selected 610100h = Digital function page CHB selected 690000h = JESD digital page selected

Texas Instruments

www.ti.com.cn

8.5.2.1.3 Register 003h (address = 003h), General Registers

Figure 132. Register 003h

7	6	5	4	3	2	1	0	
DIGITAL BANK PAGE SEL[15:8]								
R/W-0h								

Table 33. Register 003h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DIGITAL BANK PAGE SEL[15:8]	R/W	Oh	Program the JESD BANK PAGE SEL[23:0] bits to access the desired page in the JESD bank. 680000h = Main digital page CHA selected 680100h = Main digital page CHB selected 610000h = Digital function page CHA selected 610100h = Digital function page CHB selected 690000h = JESD digital page selected

8.5.2.1.4 Register 004h (address = 004h), General Registers

Figure 133. Register 004h

7	6	5	4	3	2	1	0
	DIGITAL BANK PAGE SEL[23:16]						
	R/W-0h						

Table 34. Register 004h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DIGITAL BANK PAGE SEL[23:16]	R/W	Oh	Program the JESD BANK PAGE SEL[23:0] bits to access the desired page in the JESD bank. 680000h = Main digital page CHA selected 680100h = Main digital page CHB selected 610000h = Digital function page CHA selected 610100h = Digital function page CHB selected 690000h = JESD digital page selected

8.5.2.1.5 Register 010h (address = 010h), General Registers

Figure 134. Register 010h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	3 or 4 WIRE
W-0h	R/W-0h						

Table 35. Register 010h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	3 or 4 WIRE	R/W	0h	0 = 4-wire SPI (default) 1 = 3-wire SPI where SDIN become input or output

8.5.2.1.6 Register 011h (address = 011h), General Registers

Figure 135. Register 011h

7	6	5	4	3	2	1	0
ADC PAGE SEL							
			R/V	V-0h			

Table 36. Register 011h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	ADC PAGE SEL	R/W	0h	00000000 = Normal operation, ADC page is not selected 11111111 = ADC page is selected; MASTER PAGE SEL must be set to 0

8.5.2.1.7 Register 012h (address = 012h), General Registers

Figure 136. Register 012h

7	6	5	4	3	2	1	0
0	0	0	0	0	MASTER PAGE SEL	0	0
W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h	W-0h	W-0h

Table 37. Register 012h Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	W	0h	Must write 0
2	MASTER PAGE SEL	R/W	0h	0 = Normal operation 1 = Selects the master page address; ADC PAGE must be set to 0
1-0	0	W	0h	Must write 0

ADC32RF82 ZHCSGR4-SEPTEMBER 2017 TEXAS INSTRUMENTS

www.ti.com.cn

8.5.3 Master Page (M = 0)

8.5.3.1 Register 020h (address = 020h), Master Page

Figure 137. Register 020h

7	6	5	4	3	2	1	0
0	0	0	PDN SYSREF	0	0	PDN CHB	GLOBAL PDN
W-0h	W-0h	W-0h	R/W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h

Table 38. Register 020h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4	PDN SYSREF	R/W	Oh	This bit powers down the SYSREF input buffer. 0 = Normal operation 1 = SYSREF input capture buffer is powered down and further SYSREF input pulses are ignored
3-2	0	W	0h	Must write 0
1	PDN CHB	R/W	0h	This bit powers down channel B. 0 = Normal operation 1 = Channel B is powered down
0	GLOBAL PDN	R/W	0h	This bit enables the global power-down. 0 = Normal operation 1 = Global power-down enabled

8.5.3.2 Register 032h (address = 032h), Master Page

Figure 138. Register 032h

7	6	5	4	3	2	1	0
0	0	INCR CM IMPEDANCE	0	0	0	0	0
W-0h	W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h	W-0h

Table 39. Register 032h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	INCR CM IMPEDANCE	R/W	Oh	Only use this bit when analog inputs are dc-coupled to the driver. 0 = VCM buffer directly drives the common point of biasing resistors. $1 = VCM$ buffer drives the common point of biasing resistors with $> 5 k\Omega$
4-0	0	W	0h	Must write 0

8.5.3.3 Register 039h (address = 039h), Master Page

rigure 139. Register 03

7	6	5	4	3	2	1	0
0	ALWAYS WRITE 1	0	ALWAYS WRITE 1	0	0	PDN CHB EN	SYNC TERM DIS
W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h

Table 40. Register 039h Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6	ALWAYS WRITE 1	W	0h	Always set this bit to 1
5	0	W	0h	Must write 0
4	ALWAYS WRITE 1	W	0h	Always set this bit to 1
3-2	0	W	0h	Must write 0
1	PDN CHB EN	R/W	Oh	This bit enables the power-down control of channel B through the SPI in register 20h. 0 = PDN control disabled 1 = PDN control enabled
0	SYNC TERM DIS	R/W	Oh	This bit disables the on-chip, $100-\Omega$ termination resistors on the SYNCB input. 0 = On-chip, $100-\Omega$ termination enabled 1 = On-chip, $100-\Omega$ termination disabled

8.5.3.4 Register 03Ch (address = 03Ch), Master Page

Figure 140. Register 03Ch

7	6	5	4	3	2	1 0
0	SYSREF DEL EN	0	0	0	0	SYSREF DEL[4:3]
W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h

Table 41. Register 03Ch Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6	SYSREF DEL EN	R/W	0h	This bit allows an internal delay to be added to the SYSREF input. 0 = SYSREF delay disabled 1 = SYSREF delay enabled through register settings [3Ch (bits 1-0), 5Ah (bits 7-5)]
5-2	0	W	0h	Must write 0
1-0	SYSREF DEL[4:3]	R/W	Oh	When the SYSREF delay feature is enabled (3Ch, bit 6) the delay can be adjusted in 25-ps steps; the first step is 175 ps. The PVT variation of each 25-ps step is ± 10 ps. The 175-ps step is ± 50 ps; see Table 43.

4-0

0

8.5.3.5 Register 05Ah (address = 05Ah), Master Page

7	6	5	4	1	3	2	1	0
	SYSREF DEL[2:0]		0)	0	0	0	0
W-0h	R/W-0h	W-0h	W-	0h	W-0h	W-0h	W-0h	W-0h
		Table 4	2. Regis	ster 05/	Ah Field Desc	riptions		
Bit	Field	-	Туре	Reset	Description			
7	SYSREF DEL2	,	W	0h	When the SY	When the SYSREF delay feature is enabled (3Ch, bit 6) delay can be adjusted in 25-ps steps; the first step is 175	ch, bit 6) the	
6	SYSREF DEL1	I	R/W		delay can be		ep is 175 ps.	
5	SYSREF DEL0	1	W	1	is ± 50 ps; see Table 43.		p3 3(cp i3 ±10 p3.	The Tro-ps step

Figure 141. Register 05Ah

Table 43. SYSREF DEL[2:0] Bit Settings

Must write 0

0h

W

STEP	SETTING	STEP (NOM)	TOTAL DELAY (NOM)
1	01000	175 ps	175 ps
2	00111	25 ps	200 ps
3	00110	25 ps	225 ps
4	00101	25 ps	250 ps
5	00100	25 ps	275 ps
6	00011	25 ps	300 ps

8.5.3.6 Register 03Dh (address = 3Dh), Master Page

Figure 142. Register 03Dh

7	6	5	4	3	2	1	0
0	0	0	0	0	JE	SD OUTPUT SW	ING
W-0h	W-0h	W-0h	W-0h	W-0h		R/W-0h	

Table 44. Register 03Dh Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	W	0h	Must write 0
2-0	JESD OUTPUT SWING	R/W	Oh	These bits select the output amplitude, V_{OD} (mV _{PP}), of the JESD transmitter for all lanes. $0 = 860 \text{ mV}_{PP}$ $1 = 810 \text{ mV}_{PP}$ $2 = 770 \text{ mV}_{PP}$ $3 = 745 \text{ mV}_{PP}$ $4 = 960 \text{ mV}_{PP}$ $5 = 930 \text{ mV}_{PP}$ $6 = 905 \text{ mV}_{PP}$ $7 = 880 \text{ mV}_{PP}$

www.ti.com.cn

0

2-0

8.5.3.7 Register 057h (address = 057h), Master Page

7	6	5	4		3	2	1	0
0	0	0	SEL SYSREF REG		ASSERT SYSREF REG	0	0	0
W-0h	W-0h	W-0h	R/W-0h		R/W-0h	W-0h	W-0h	W-0h
			Table 45. Regi	ister 05	7h Field Descriptions	i		
Bit	Field		Туре	Reset	Description			
7-5	0		W	0h	Must write 0			
4	SEL SYSREF	REG	R/W	0h	SYSREF can be assen SYSREF REG register Using SYSREF . 0 = SYSREF is logic lo 1 = SYSREF is logic hi	ted using this I bit is set high w gh	bit. Ensure that before using the	t the SEL his bit; see
3	ASSERT SYSI	REF REG	R/W	0h	Set this bit to use the S 0 = SYSREF is asserted 1 = SYSREF can be as register bit Other bits = 0	PI register to and by device pisserted by the	assert SYSRE ns ASSERT SYS	F. REF REG

Figure 143. Register 057h

8.5.3.8 Register 058h (address = 058h), Master Page

W

Figure 144. Register 058h

Must write 0

0h

7	6	5	4	3	2	1	0
0	0	SYNCB POL	0	0	0	0	0
W-0h	W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h	W-0h

Table 46. Register 058h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	SYNCB POL	R/W	0h	This bit inverts the SYNCB polarity. 0 = Polarity is not inverted; this setting matches the timing diagrams in this document and is the proper setting to use 1 = Polarity is inverted
4-0	0	W	0h	Must write 0

ADC32RF82 ZHCSGR4-SEPTEMBER 2017 TEXAS INSTRUMENTS

www.ti.com.cn

8.5.4 ADC Page (FFh, M = 0)

8.5.4.1 Register 03Fh (address = 03Fh), ADC Page

Figure 145. Register 03Fh

7	6	5	4	3	2	1	0
0	0	0	0	0	SLOW SP EN1	0	0
W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h	W-0h	W-0h

Table 47. Register 03Fh Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	W	0h	Must write 0
2	SLOW SP EN1	R/W	0h	This bit must be enabled for clock rates below 2.5 GSPS. 0 = ADC sampling rates are faster than 2.5 GSPS 1 = ADC sampling rates are slower than 2.5 GSPS
1-0	0	W	0h	Must write 0

8.5.4.2 Register 042h (address = 042h), ADC Page

Figure 146. Register 042h

7	6	5	4	3	2	1	0
0	0	0	SLOW SP EN2	0	0	1	1
W-0h	W-0h	W-0h	R/W-0h	W-0h	W-0h	W-1h	W-1h

Table 48. Register 042h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4	SLOW SP EN2	R/W	0h	This bit must be enabled for clock rates below 2.5 GSPS. 0 = ADC sampling rates are faster than 2.5 GSPS 1 = ADC sampling rates are slower than 2.5 GSPS
3-2	0	W	0h	Must write 0
1-0	1	W	1h	Must write 1

8.5.5 Digital Function Page (610000h, M = 1 for Channel A and 610100h, M = 1 for Channel B)

8.5.5.1 Register A6h (address = 0A6h), Digital Function Page

Figure 147. Register 0A6h

7	6	5	4	3	2	1	0
0	0	0	0		DIG	GAIN	
W-0h	W-0h	W-0h	W-0h		R/W	/-0h	

Table 49. Register 0A6h Field Descriptions

		-		-
Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3-0	DIG GAIN	R/W	0h	These bits set the digital gain of the ADC output data prior to decimation up to 11 dB; see Table 50.

Table 50. DIG GAIN Bit Settings

SETTING	DIGITAL GAIN
0000	0 dB
0001	1 dB
0010	2 dB
1010	10 dB
1011	11 dB

8.5.6 Offset Corr Page Channel A (610000h, M = 1)

8.5.6.1 Register 034h (address = 034h), Offset Corr Page Channel A

Figure 148. Register 034h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SEL EXT EST
W-0h	R/W-0h						

Table 51. Register 034h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	SEL EXT EST	R/W	0h	This bit selects the external estimate for the offset correction block; see the Using DC Coupling in the ADC32RF82 section.

TEXAS INSTRUMENTS

www.ti.com.cn

8.5.6.2 Register 068h (address = 068h), Offset Corr Page Channel A

	7	6	5	4	3	2	1	0
FREEZ	ZE OFFSET CORR	ALWAYS WRITE 1	0	0	0	DIS OFFSET CORR	ALWAYS WRITE 1	0
R	/W-0h	R/W-0h	W-0h	W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h
		Table	52. Registe	er 068h F	ield Descr	iptions		
Bit	Field		Туре	Reset	Description	ı		
7 FREEZE OFFSET CORR		R/W	Oh	Use this bit and bits 5 and 1 to freeze the offset estimation process of the offset corrector; see the Using DC Coupling in the ADC32RF82 section. 011 = Apply this setting after powering up the device 111 = Offset corrector is frozen, does not estimate offset anymore, and applies the last computed value. Others = Do not use				
6	ALWAYS WR	RITE 1	R/W	0h	Always write this bit as 1 for the offset correction block to worl properly.			lock to work
5-3	0		W	0h	Must write C	Must write 0		
2	2 DIS OFFSET CORR		R/W	0h	0 = Offset correction block works and removes $f_S / 8$, $f_S / 4$, $3f_S / 8$, and $f_S / 2$ spurs 1 = Offset correction block is disabled			8, f _S / 4,
1 ALWAYS WRITE 1		R/W	0h	Always write this bit as 1 for the offset correction block to wo properly.			lock to work	
0	0		W	0h	Must write 0			

Figure 149. Register 068h

8.5.7 Offset Corr Page Channel B (610000h, M = 1)

8.5.7.1 Register 068h (address = 068h), Offset Corr Page Channel B

Figure 150. Register 068h

7	6	5	4	3	2	1	0
FREEZE OFFSET CORR	ALWAYS WRITE 1	0	0	0	DIS OFFSET CORR	ALWAYS WRITE 1	0
R/W-0h	R/W-0h	W-0h	W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h

Table 53. Register 068h Field Descriptions

Bit	Field	Туре	Reset	Description
7,5,1	FREEZE OFFSET CORR	R/W	Oh	Use this bit and bits 5 and 1 to freeze the offset estimation process of the offset corrector; see the <i>Using DC Coupling in the ADC32RF82</i> section. 011 = Apply this setting after powering up the device 111 = Offset corrector is frozen, does not estimate offset anymore, and applies the last computed value. Others = Do not use
6	ALWAYS WRITE 1	R/W	0h	Always write this bit as 1 for the offset correction block to work properly.
5-3	0	W	0h	Must write 0
2	DIS OFFSET CORR	R/W	0h	0 = Offset correction block works and removes $f_S / 8$, $f_S / 4$, $3f_S / 8$, and $f_S / 2$ spurs 1 = Offset correction block is disabled
1	ALWAYS WRITE 1	R/W	0h	Always write this bit as 1 for the offset correction block to work properly.
0	0	W	0h	Must write 0

TEXAS INSTRUMENTS

www.ti.com.cn

8.5.8 Digital Gain Page (610005h, M = 1 for Channel A and 610105h, M = 1 for Channel B)

8.5.8.1 Register 0A6h (address = 0A6h), Digital Gain Page

Figure 151. Register 0A6h

7	6	5	4	3	2	1	0
0	0	0	0		DIGITA	L GAIN	
W-0h	W-0h	W-0h	W-0h		R/W	/-0h	

Table 54. Register 0A6h Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3-0	DIGITAL GAIN	R/W	Oh	These bits apply a digital gain to the ADC data (before the DDC) up to 11 dB. 0000 = Default 0001 = 1 dB 1011 = 11 dB Others = Do not use

8.5.9 Main Digital Page Channel A (680000h, M = 1)

8.5.9.1 Register 000h (address = 000h), Main Digital Page Channel A

Figure 152. Register 000h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DIG CORE RESET GBL
W-0h	R/W-0h						

Table 55. Register 000h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DIG CORE RESET GBL	R/W	0h	Pulse this bit $(0 \rightarrow 1 \rightarrow 0)$ to reset the digital core (applies to both channel A and B). All Nyquist zone settings take effect when this bit is pulsed.

8.5.9.2 Register 0A2h (address = 0A2h), Main Digital Page Channel A

7	6	5	4	3	2	1	0
0	0	0	0	NQ ZONE EN		NYQUIST ZONE	
W-0h	W-0h	W-0h	W-0h	R/W-0h		R/W-0h	

Figure 153. Register 0A2h

Table 56. Register 0A2h Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3	NQ ZONE EN	R/W	0h	This bit allows for specification of the operating Nyquist zone. 0 = Nyquist zone specification disabled 1 = Nyquist zone specification enabled
2-0	NYQUIST ZONE	R/W	Oh	These bits specify the operating Nyquist zone for the analog correction loop. Set the NQ ZONE EN bit before programming these bits. For example, at s 2.4-GSPS chip clock, the first Nyquist zone is from dc to 1.2 GHz, the second Nyquist zone is from 1.2 GHz to 2.4 GHz, and so on. 000 = First Nyquist zone (dc $- f_S / 2$) 001 = Second Nyquist zone (dc $- f_S$) 010 = Third Nyquist zone 011 = Fourth Nyquist zone

8.5.10 Register 0A5h (address = 0A5h) Main Digital Page Channel A

Figure 154. Register 0A5h

7	6	5	4	3	2	1	0	
	Sampling Frequency for ChA and ChB							
	R/W-0h							

Table 57. Register 0A5h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Sampling Frequency for ChA and ChB	R/W	0h	These bits specify the ADC sampling frequency (common settings for both channel A and channel B). Value = $f_S / 24$; for example, if $f_S = 3000$ MSPS, then the value = round (3000 / 24) = 125.

8.5.11 Register 0A9h (address = 0A9h) Main Digital Page Channel A

Figure 155. Register 0A9h

7	6	5	4	3	2	1	0
0	0	0	0	Sampling Frequency Enable	0	1	1
W-0h	W-0h	W-0h	W-0h	R/W-0h	W-0h	W-0h	W-0h

Table 58. Register 0A9h Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3	Sampling Frequency Enable	R/W	0h	This bit allows for specification of the operating sampling frequency. 0 = Sampling frequency specification disabled 1 = Sampling frequency specification enabled
2	0	W	0h	Must write 0
1-0	1	W	0h	Must write 0

8.5.12 Register 0B0h (address = 0B0h) Main Digital Page Channel A

Figure 156. Register 0B0h

7	6	5	4	3	2	1	0
Band1 Lower-Edge Frequency LSB Setting							
	R/W-0h						

Table 59. Register 0B0h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band1 Lower-Edge Frequency LSB Setting	R/W	Oh	These bits specify the lower edge of the Band1 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.13 Register 0B1h (address = 0B1h) Main Digital Page Channel A

Figure 157. Register 0B1h

7	6	5	4	3	2	1	0
0	0	0		Band1 Lowe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	W-0h			R/W-0h		

Table 60. Register 0B1h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	Band1 Lower-Edge Frequency MSB Setting	R/W	Oh	These bits specify the lower edge of the Band1 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.14 Register 0B2h (address = 0B2h) Main Digital Page Channel A

Figure 158. Register 0B2h

7	6	5	4	3	2	1	0	
		Bar	nd1 Upper-Edge F	requency LSB Set	tting			
	R/W-0h							

Table 61. Register 0B2h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band1 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of Band1 Frequency (LSB 8- bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.15 Register 0B3h (address = 0B3h) Main Digital Page Channel A

Figure 159. Register 0B3h

7	6	5	4	3	2	1	0
0	0	Band1 Frequency Range Enable		Band1 Uppe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 62. Register 0B3h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band1 Frequency Range Enable	R/W	0h	This bit enables the Band1 frequency range settings. The lower and upper frequency edge specifications for Band1 are used only if this bit is set to 1.
4-0	Band1 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band1 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.16 Register 0B4h (address = 0B4h) Main Digital Page Channel A

Figure 160. Register 0B4h

7	6	5	4	3	2	1	0
		Bar	nd2 Lower-Edge F	requency LSB Set	tting		
			R/W	/-0h			

Table 63. Register 0B4h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band2 Lower-Edge Frequency LSB Setting	R/W	Oh	These bits specify the lower edge of the Band2 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.17 Register 0B5h (address = 0B5h) Main Digital Page Channel A

Figure 161. Register 0B5h

7	6	5	4	3	2	1	0
0	0	0		Band2 Lowe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	W-0h			R/W-0h		

Table 64. Register 0B5h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	Band2 Lower-Edge Frequency MSB Setting	R/W	Oh	These bits specify the lower edge of the Band2 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.18 Register 0B6h (address = 0B6h) Main Digital Page Channel A

Figure 162. Register 0B6h

7	6	5	4	3	2	1	0	
Band2 Upper-Edge Frequency LSB Setting								
	R/W-0h							

Table 65. Register 0B6h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band2 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of the Band2 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.19 Register 0B7h (address = 0B7h) Main Digital Page Channel A

Figure 163. Register 0B7h

7	6	5	4	3	2	1	0
0	0	Band2 Frequency Range Enable		Band2 Uppe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 66. Register 0B7h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band2 Frequency Range Enable	R/W	0h	This bit enables the Band2 frequency range settings. The lower and upper frequency edge specifications for Band2 are used only if this bit is set to 1.
4-0	Band2 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band2 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.20 Register 0B8h (address = 0B8h) Main Digital Page Channel A

Figure 164. Register 0B8h

7	6	5	4	3	2	1	0
Band3 Lower-Edge Frequency LSB Setting							
			R/W	V-0h			

Table 67. Register 0B8h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band3 Lower-Edge Frequency LSB Setting	R/W	Oh	These bits specify the lower edge of the Band3 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.21 Register 0B9h (address = 0B9h) Main Digital Page Channel A

Figure 165. Register 0B9h

7	6	5	4	3	2	1	0
0	0	0		Band3 Lowe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	W-0h			R/W-0h		

Table 68. Register 0B9h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	Band3 Lower-Edge Frequency MSB Setting	R/W	Oh	These bits specify the lower edge of the Band3 frequency (MSB 5-bit settings). 1 LSB = 1 MHz. Range = 8191 MHz

8.5.22 Register 0BAh (address = 0BAh) Main Digital Page Channel A

Figure 166. Register 0BAh

7	6	5	4	3	2	1	0	
Band3 Upper-Edge Frequency LSB Setting								
	R/W-0h							

Table 69. Register 0BAh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band3 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of the Band2 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.23 Register 0BBh (address = 0BBh) Main Digital Page Channel A

Figure 167. Register 0BBh

7	6	5	4	3	2	1	0
0	0	Band3 Frequency Range Enable		Band3 Uppe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 70. Register 0BBh Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band3 Frequency Range Enable	R/W	0h	This bit enables the Band3 frequency range settings. The lower and upper frequency edge specifications for Band3 are used only if this bit is set to 1.
4-0	Band3 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band3 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.24 Main Digital Page Channel B (680001h, M = 1)

8.5.24.1 Register 000h (address = 000h), Main Digital Page Channel B

Figure 168. Register 000h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DIG CORE RESET GBL
W-0h	R/W-0h						

Table 71. Register 000h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DIG CORE RESET GBL	R/W	0h	Pulse this bit $(0 \rightarrow 1 \rightarrow 0)$ to reset the digital core (applies to both channel A and B). All Nyquist zone settings take effect when this bit is pulsed.

8.5.24.2 Register 0A2h (address = 0A2h), Main Digital Page Channel B

7	6	5	4	3	2	1	0
0	0	0	0	NQ ZONE EN		NYQUIST ZONE	
W-0h	W-0h	W-0h	W-0h	R/W-0h		R/W-0h	

Figure 169. Register 0A2h

Table 72. Register 0A2h Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3	NQ ZONE EN	R/W	0h	This bit allows for specification of the operating Nyquist zone. 0 = Nyquist zone specification disabled 1 = Nyquist zone specification enabled
2-0	NYQUIST ZONE	R/W	Oh	These bits specify the operating Nyquist zone for the analog correction loop. Set the NQ ZONE EN bit before programming these bits. For example, at a 2.4-GSPS chip clock, first Nyquist zone is from dc to 1.2 GHz, the second Nyquist zone is from 1.2 GHz to 2.4 GHz, and so on. 000 = First Nyquist zone (dc - $f_S / 2$) 001 = Second Nyquist zone ($f_S / 2 - f_S$) 010 = Third Nyquist zone 011 = Fourth Nyquist zone

8.5.24.3 Register 0B0h (address = 0B0h) Main Digital Page Channel B

Figure 170. Register 0B0h

7	6	5	4	3	2	1	0
		Bar	d1 Lower-Edge F	requency LSB Set	tting		
			R/M	/-0h			

Table 73. Register 0B0h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band1 Lower-Edge Frequency LSB Setting	R/W	Oh	These bits specify the lower edge of the Band1 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.4 Register 0B1h (address = 0B1h) Main Digital Page Channel B

Figure 171. Register 0B1h

7	6	5	4	3	2	1	0
0	0	0		Band1 Lowe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	W-0h			R/W-0h		

Table 74. Register 0B1h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	Band1 Lower-Edge Frequency MSB Setting	R/W	Oh	These bits specify the lower edge of the Band1 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.24.5 Register 0B2h (address = 0B2h) Main Digital Page Channel B

Figure 172. Register 0B2h

7	6	5	4	3	2	1	0	
		Ban	d1 Upper-Edge Fi	requency LSB Set	ting			
	R/W-0h							

Table 75. Register 0B2h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band1 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of the Band1 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.6 Register 0B3h (address = 0B3h) Main Digital Page Channel B

Figure 173. Register 0B3h

7	6	5	4	3	2	1	0
0	0	Band1 Frequency Range Enable		Band1 Uppe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 76. Register 0B3h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band1 Frequency Range Enable	R/W	0h	This bit enables the Band1 frequency range settings. The lower and upper frequency edge specifications for Band1 are used only if this bit is set to 1.
4-0	Band1 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band1 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.24.7 Register 0B4h (address = 0B4h) Main Digital Page Channel B

Figure 174. Register 0B4h

7	6	5	4	3	2	1	0
		Ban	d2 Lower-Edge F	requency LSB Set	tting		
			R/M	/-0h			

Table 77. Register 0B4h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band2 Lower-Edge Frequency LSB Setting	R/W	0h	These bits specify the lower edge of the Band2 Frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.8 Register 0B5h (address = 0B5h) Main Digital Page Channel B

Figure 175. Register 0B5h

7	6	5	4	3	2	1	0
0	0	0		Band2 Lowe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	W-0h			R/W-0h		

Table 78. Register 0B5h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	Band2 Lower-Edge Frequency MSB Setting	R/W	Oh	These bits specify the lower edge of the Band2 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.24.9 Register 0B6h (address = 0B6h) Main Digital Page Channel B

Figure 176. Register 0B6h

7	6	5	4	3	2	1	0		
Band2 Upper-Edge Frequency LSB Setting									
			R/W	V-0h					

Table 79. Register 0B6h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band2 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of the Band2 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.10 Register 0B7h (address = 0B7h) Main Digital Page Channel B

Figure 177. Register 0B7h

7	6	5	4	3	2	1	0
0	0	Band2 Frequency Range Enable		Band2 Upper	r-Edge Frequency	/ MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 80. Register 0B7h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band2 Frequency Range Enable	R/W	0h	This bit enables the Band2 frequency range settings. The lower and upper frequency edge specifications for Band2 are used only if this bit is set to 1.
4-0	Band2 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band2 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

8.5.24.11 Register 0B8h (address = 0B8h) Main Digital Page Channel B

Figure 178. Register 0B8h

7	6	5	4	3	2	1	0
		Ban	d3 Lower-Edge F	requency LSB Set	tting		
			R/V	V-0h			

Table 81. Register 0B8h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band3 Lower-Edge Frequency LSB Setting	R/W	Oh	These bits specify the lower edge of the Band3 frequency (LSB 8-bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.12 Register 0B9h (address = 0B9h) Main Digital Page Channel B

Figure 179. Register 0B9h

7	6	5	4	3	2	1	0			
0	0	0		Band3 Lowe	er-Edge Frequency	MSB Setting				
W-0h	W-0h W-0h R/W-0h									
	Table 82 Register 0B9h Field Descriptions									

Bit Field Reset Туре Description 7-5 0 W 0h Must write 0 R/W 0h 4-0 Band3 Lower-Edge Frequency MSB These bits specify the lower edge of the Band3 frequency (MSB Setting 5-bit settings).

1 LSB = 1 MHz Range = 8191 MHz

8.5.24.13 Register 0BAh (address = 0BAh) Main Digital Page Channel B

Figure 180. Register 0BAh

7	6	5	4	3	2	1	0		
Band3 Upper-Edge Frequency LSB Setting									
			R/W	V-0h					

Table 83. Register 0BAh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Band3 Upper-Edge Frequency LSB Setting	R/W	Oh	These bits specify the upper edge of Band3 frequency (LSB 8- bit settings). 1 LSB = 1 MHz Range = 8191 MHz Enter the absolute frequency values here, not the aliased frequency values.

8.5.24.14 Register 0BBh (address = 0BBh) Main Digital Page Channel B

Figure 181. Register 0BBh

7	6	5	4	3	2	1	0
0	0	Band3 Frequency Range Enable		Band3 Uppe	r-Edge Frequency	MSB Setting	
W-0h	W-0h	R/W-0h			R/W-0h		

Table 84. Register 0BBh Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5	Band3 Frequency Range Enable	R/W	0h	This bit enables the Band3 frequency range settings. The lower and upper frequency edge specifications for Band3 are used only if this bit is set to 1.
4-0	Band3 Upper-Edge Frequency MSB Setting	R/W	Oh	These bits specify the upper edge of the Band3 frequency (MSB 5-bit settings). 1 LSB = 1 MHz Range = 8191 MHz

ADC32RF82 ZHCSGR4-SEPTEMBER 2017 TEXAS INSTRUMENTS

www.ti.com.cn

8.5.25 JESD Digital Page (6900h, M = 1)

8.5.25.1 Register 001h (address = 001h), JESD Digital Page

Figure	182.	Register	001h
--------	------	----------	------

7	6	5	4	3	2	1	0
CTRL K	0	0	TESTMODE EN	0	LANE ALIGN	FRAME ALIGN	TX LINK DIS
R/W-0h	W-0h	W-0h	R/W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h

Table 85. Register 001h Field Descriptions

Bit	Field	Туре	Reset	Description
7	CTRL K	R/W	Oh	This bit is the enable bit for the number of frames per multiframe. 0 = Default is five frames per multiframe 1 = Frames per multiframe can be set in register 07h
6-5	0	R/W	0h	Must write 0
4	TESTMODE EN		0	This bit generates a long transport layer test pattern mode according to section 5.1.6.3 of the JESD204B specification. 0 = Test mode disabled 1 = Test mode enabled
3	0	W	0h	Must write 0
2	LANE ALIGN	R/W	Oh	This bit inserts a lane alignment character (K28.3) for the receiver to align to the lane boundary per section 5.3.3.5 of the JESD204B specification. 0 = Normal operation 1 = Inserts lane alignment characters
1	FRAME ALIGN	R/W	0h	This bit inserts a frame alignment character (K28.7) for the receiver to align to the frame boundary per section 5.3.35 of the JESD204B specification. 0 = Normal operation 1 = Inserts frame alignment characters
0	TX LINK DIS	R/W	Oh	This bit disables sending the initial link alignment (ILA) sequence when SYNC is deasserted. 0 = Normal operation 1 = ILA disabled

8.5.25.2 Register 002h (address = 002h), JESD Digital Page

Figure 183.	Register	002h
-------------	----------	------

7	6	5	4	3	2	1	0
SYNC REG	SYNC REG EN	0	0	12BIT MODE		JESD N	10DE0
R/W-0h	R/W-0h	W-0h	W-0h	R/W-0h		R/W	-0h

Table 86. Register 002h Field Descriptions

Bit	Field	Туре	Reset	Description
7	SYNC REG	R/W	0h	This bit provides SYNC control through the SPI. 0 = Normal operation 1 = ADC output data are replaced with K28.5 characters
6	SYNC REG EN	R/W	Oh	This bit is the enable bit for SYNC control through the SPI. 0 = Normal operation 1 = SYNC control through the SPI is enabled (ignores the SYNCB input pins)
5-4	0	W	0h	Must write 0
3-2	12BIT MODE	R/W	0h	This bit enables the 12-bit output mode for more efficient data packing. 00 = Normal operation, 14-bit output 01, 10 = Unused 11 = High-efficient data packing enabled
1-0	JESD MODE0	R/W	Oh	These bits select the configuration register to configure the correct LMFS frame assemblies for different decimation settings; see the JESD frame assembly tables in the <i>JESD204B Frame</i> <i>Assembly</i> section. 00 = 0 01 = 1 10 = 2 11 = 3

8.5.25.3 Register 003h (address = 003h), JESD Digital Page

7	6	5	4		3	2	1	0					
LINK L	AYER TEST	MODE	LINK LAY RP	AT	LMFC MASK RESET	JESD MODE1	JESD MODE2	RAMP 12BIT					
	R/W-0h		R/W-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0h					
	Table 87. Register 003h Field Descriptions												
Bit	Bit Field Type Reset Description												
7-5	LINK LAY	ER TESTM	MODE	R/W	Oh	These bits generate a the JESD204B docume 000 = Normal ADC dat 001 = D21.5 (high-freq 010 = K28.5 (mixed-fre 011 = Repeat initial lar and repeats lane align 100 = 12-octet RPAT j	pattern according to s ent. ta juency jitter pattern) equency jitter pattern) ne alignment (generat ment sequences cont itter pattern	section 5.3.3.8.2 of es a K28.5 character inuously)					
4	LINK LAY	RPAT		R/W	0h	This bit changes the rupattern test mode (only $0 = $ Normal operation $1 = $ Changes disparity	inning disparity in a m y when link layer test	nodified RPAT mode = 100).					
3	LMFC MA	SK RESE	Т	R/W	0h	0 = Normal operation							
2	JESD MO	DE1		R/W	0h	These bits select the c correct LMFS frame as see the JESD frame as Assembly section	onfiguration register t ssemblies for different ssembly tables in the	o configure the decimation settings; <i>JESD204B Frame</i>					
1	JESD MO	DE2		R/W	0h	These bits select the c correct LMFS frame as see the JESD frame as <i>Assembly</i> section	onfiguration register t ssemblies for different ssembly tables in the	o configure the decimation settings; <i>JESD204B Frame</i>					
0	RAMP 12	BIT		R/W	0h	12-bit RAMP test patte 0 = Normal data outpu 1 = Digital output is the	rn. t e RAMP pattern						

Figure 184. Register 003h

8.5.25.4 Register 004h (address = 004h), JESD Digital Page

Figure 185. Register 004h

7	6	5	4	3	2	1 0	
0	0	0	0	0	0	REL ILA SEQ	
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h	

Table 88. Register 004h Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	W	0h	Must write 0
1-0	REL ILA SEQ	R/W	Oh	These bits delay the generation of the lane alignment sequence by 0, 1, 2, or 3 multiframes after the code group synchronization. 00 = 0 multiframe delays 01 = 1 multiframe delay 10 = 2 multiframe delays 11 = 3 multiframe delays

8.5.25.5 Register 006h (address = 006h), JESD Digital Page

	Figure	186.	Register	006h
--	--------	------	----------	------

7	6	5	4	3	2	1	0
SCRAMBLE EN	0	0	0	0	0	0	0
R/W-0h	W-0h						

Table 89. Register 006h Field Descriptions

Bit	Field	Туре	Reset	Description
7	SCRAMBLE EN	R/W	0h	This bit is the scramble enable bit in the JESD204B interface. 0 = Scrambling disabled 1 = Scrambling enabled
6-0	0	W	0h	Must write 0

8.5.25.6 Register 007h (address = 007h), JESD Digital Page

Figure 187. Register 007h

7	6	5	4	3	2	1	0
0	0	0		FRAME	S PER MULTIFR	AME (K)	
W-0h	W-0h	W-0h			R/W-0h		

Table 90. Register 007h Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	FRAMES PER MULTIFRAME (K)	R/W	0h	These bits set the number of multiframes. Actual K is the value in hex + 1 (that is, 0Fh is $K = 16$).

8.5.25.7 Register 016h (address = 016h), JESD Digital Page

Figure 188. Register 016h

7	6	5	4	3	2	1	0
0		40x MODE		0	0	0	0
W-0h		R/W-0h		W-0h	W-0h	W-0h	W-0h

Table 91. Register 016h Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6-4	40x MODE	R/W	0h	This register must be set for 40x mode operation. 000 = Register is set for 20x and 80x mode 111 = Register must be set for 40x mode
3-0	0	W	0h	Must write 0

TEXAS INSTRUMENTS

www.ti.com.cn

8.5.25.8 Register 017h (address = 017h), JESD Digital Page

Figure 189. Register 017h

7	6	5	4	3	2	1	0
0	0	0	0	Lane0 POL	Lane1 POL	Lane2 POL	Lane3 POL
W-0h	R/W-0h	R/W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h

Table 92. Register 017h Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6-4	0	R/W	0h	Must write 0
3-0	Lane[3:0] POL	W	0h	These bits set the polarity of the individual JESD output lanes. 0 = Polarity as given in the pinout (noninverted) 1 = Inverts polarity (positive, P, or negative, M)

8.5.25.9 Register 032h-035h (address = 032h-035h), JESD Digital Page

Figure 190. Register 032h

7	6	5	4	3	2	1	0
			0	0			
R/W-0h						W-0h	W-0h

Figure 191. Register 033h

7	6	5	4	3	2	1	0
			0	0			
R/W-0h						W-0h	W-0h

Figure 192. Register 034h

7	6	5	4	3	2	1	0
			0	0			
R/W-0h						W-0h	W-0h

Figure 193. Register 035h

7	6	5	4	3	2	1	0
			0	0			
			W-0h	W-0h			

Table 93. Register 032h-035h Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	SEL EMP LANE	R/W	Oh	These bits select the amount of de-emphasis for the JESD output transmitter. The de-emphasis value in dB is measured as the ratio between the peak value after the signal transition to the settled value of the voltage in one bit period. 0 = 0 dB 1 = -1 dB 3 = -2 dB 7 = -4.1 dB 15 = -6.2 dB 31 = -8.2 dB 63 = -11.5 dB
1-0	0	W	0h	Must write 0

8.5.25.10 Register 036h (address = 036h), JESD Digital Page

Figure 194.	Register 036h
-------------	---------------

7	6	5	4	3	2	1	0
0	CMOS SYNCB	0	0	0	0	0	0
W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h

Table 94. Register 036h Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6	CMOS SYNCB	R/W	Oh	This bit enables single-ended control of SYNCB using the GPIO4 pin (pin 63). The differential SYNCB input is ignored. Set the EN CMOS SYNCB bit and keep the CH bit high to make this bit effective. 0 = Differential SYNCB input 1 = Single-ended SYNCB input using pin 63
5-0	0	W	0h	Must write 0

8.5.25.11 Register 037h (address = 037h), JESD Digital Page

Figure 195. Register 037h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	PLL MC	DE
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0)h

Table 95. Register 037h Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	W	0h	Must write 0
1-0	PLL MODE	R/W	Oh	These bits select the PLL multiplication factor; see the JESD tables in the <i>JESD204B Frame Assembly</i> section for settings. 00 = 20x mode 01 = 16x mode 10 = 40x mode (the 40x MODE bit in register 16h must also be set) 11 = 80x mode

8.5.25.12 Register 03Ch (address = 03Ch), JESD Digital Page

7	6	5	4	3	2	1	0	
0	0	0	0	0	0 0 EN CMOS SYNCB			
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h W-0h R/W-0h		
Table 96. Register 03Ch Field Descriptions								
Bit	Field Type Reset Description							
7-1	0		W	0h	Must write 0			
0	EN CMOS SYNCE	3	R/W	Oh	Set this bit and the CMOS SYNCB bit high to provide a single- ended SYNC input to the device instead of differential. Also, keep the CH bit high. Thus:			
					1. Select the JESD digital page.			
					2. Write address 7036h with value 40h.			

3. Write address 703Ch with value 01h.

Figure 196. Register 03Ch

8.5.25.13 Register 03Eh (address = 03Eh), JESD Digital Page

Figure 197. Register 03E	Figure	197.	Register	03Eł
--------------------------	--------	------	----------	------

7	6	5	4	3	2	1	0
0	MASK CLKDIV SYSREF	MASK NCO SYSREF	0	0	0	0	0
W-0h	R/W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h	W-0h

Table 97. Register 03Eh Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6	MASK CLKDIV SYSREF	R/W	0h	Use this bit to mask the SYSREF going to the input clock divider. 0 = Input clock divider is reset when SYSREF is asserted (that is, when SYSREF transitions from low to high) 1 = Input clock divider ignores SYSREF assertions
5	MASK NCO SYSREF	R/W	0h	Use this bit to mask the SYSREF going to the NCO in the DDC block and LMFC counter of the JESD interface. 0 = NCO phase and LMFC counter are reset when SYSREF is asserted (that is, when SYSREF transitions from low to high) 1 = NCO and LMFC counter ignore SYSREF assertions
4-0	0	W	0h	Must write 0

8.5.26 Decimation Filter Page

Direct Addressing, 16-Bit Address, 5000h for Channel A, 5800h for Channel B

8.5.26.1 Register 000h (address = 000h), Decimation Filter Page

Figure 198. Register 000h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DDC EN
W-0h	R/W-0h						

Table 98. Register 000h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DDC EN	R/W	0h	This bit enables the decimation filter. 0 = Do not use 1 = Decimation filter enabled

8.5.26.2 Register 001h (address = 001h), Decimation Filter Page

7	6	5	4	3	2	1	0
0	0	0	0		DECIM F	ACTOR	
W-0h	W-0h	W-0h	W-0h		R/W	'-0h	

Figure 199. Register 001h

Table 99. Register 001h Field Descriptions

Bit	Field	Туре	Reset	Description						
7-4	0	W	0h	Must write 0						
3-0	DECIM FACTOR	R/W	0h	These bits configure the decimation filter setting. 0000 = Divide-by-4 complex 0001 = Divide-by-6 complex 0010 = Divide-by-8 complex 0011 = Divide-by-9 complex 0100 = Divide-by-10 complex 0101 = Divide-by-12 complex 0110 = Not used 0111 = Divide-by-16 complex 1000 = Divide-by-18 complex 1001 = Divide-by-20 complex 1010 = Divide-by-24 complex 1011 = Not used 1100 = Divide-by-32 complex						

8.5.26.3 Register 002h (address = 2h), Decimation Filter Page

Figure 200. Register 002h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DUAL BAND EN
W-0h	R/W-0h						

Table 100. Register 002h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DUAL BAND EN	R/W	Oh	This bit enables the dual-band DDC filter for the corresponding channel. 0 = Single-band DDC 1 = Dual-band DDC

8.5.26.4 Register 005h (address = 005h), Decimation Filter Page

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	REAL OUT EN
W-0h	R/W-0h						

Figure 201. Register 005h

Table 101. Register 005h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	REAL OUT EN	R/W	0h	This bit converts the complex output to real output at 2x the output rate. 0 = Complex output format 1 = Real output format

8.5.26.5 Register 006h (address = 006h), Decimation Filter Page

Figure 202. Register 006h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DDC MUX
W-0h	R/W-0h						

Table 102. Register 006h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DDC MUX	R/W	0h	This bit connects the DDC to the alternate channel ADC to enable up to four DDCs with one ADC and completely turn off the other ADC channel. 0 = Normal operation 1 = DDC block takes input from the alternate ADC

8.5.26.6 Register 007h (address = 007h), Decimation Filter Page

Figure 203. Register 007h

7	6	5	4	3	2	1	0
			DDC0 N	CO1 LSB			
R/W-0h							

Table 103. Register 007h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO1 LSB	R/W	0h	These bits are the LSB of the NCO frequency word for NCO1 of DDC0 (band 1). The LSB represents $f_S / (2^{16})$, where f_S is the ADC sampling frequency.

8.5.26.7 Register 008h (address = 008h), Decimation Filter Page

Figure 204. Register 008h

7	6	5	4	3	2	1	0
			DDC0 N	CO1 MSB			
			R/V	V-0h			

Table 104. Register 008h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO1 MSB	R/W	0h	These bits are the MSB of the NCO frequency word for NCO1 of DDC0 (band 1). The LSB represents $f_S / (2^{16})$, where f_S is the ADC sampling frequency.

8.5.26.8 Register 009h (address = 009h), Decimation Filter Page

Figure 205. Register 009h

7	6	5	4	3	2	1	0
			DDC0 NO	CO2 LSB			
			R/W	/-0h			

Table 105. Register 009h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO2 MSB	R/W	Oh	These bits are the LSB of the NCO frequency word for NCO2 of DDC0 (band 1). The LSB represents f_S / (2 ¹⁶), where f_S is the ADC sampling frequency.

8.5.26.9 Register 00Ah (address = 00Ah), Decimation Filter Page

Figure 206. Register 00Ah

7	6	5	4	3	2	1	0
			DDC0 NC	CO2 MSB			
R/W-0h							

Table 106. Register 00Ah Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO2 MSB	R/W	Oh	These bits are the MSB of the NCO frequency word for NCO2 of DDC0 (band 1). The LSB represents f_S / (2^{16}) , where f_S is the ADC sampling frequency.

8.5.26.10 Register 00Bh (address = 00Bh), Decimation Filter Page

Figure 207. Register 00Bh

7	6	5	4	3	2	1	0
DDC0 NCO3 LSB							
			R/W	V-0h			

Table 107. Register 00Bh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO3 LSB	R/W	0h	These bits are the LSB of the NCO frequency word for NCO3 of DDC0 (band 1). The LSB represents $f_S / (2^{16})$, where f_S is the ADC sampling frequency.

8.5.26.11 Register 00Ch (address = 00Ch), Decimation Filter Page

Figure 208. Register 00Ch

7	6	5	4	3	2	1	0
			DDC0 NO	CO3 MSB			
			R/W	V-0h			

Table 108. Register 00Ch Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC0 NCO3 MSB	R/W	Oh	These bits are the MSB of the NCO frequency word for NCO3 of DDC0 (band 1). The LSB represents f_S / (2 ¹⁶), where f_S is the ADC sampling frequency.

8.5.26.12 Register 00Dh (address = 00Dh), Decimation Filter Page

Figure 209. Register 00Dh

7	6	5	4	3	2	1	0
			DDC1 N	CO4 LSB			
R/W-0h							

Table 109. Register 00Dh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC1 NCO4 LSB	R/W	Oh	These bits are the LSB of the NCO frequency word for NCO4 of DDC1 (band 2, only when dual-band mode is enabled). The LSB represents f_S / (2 ¹⁶), where f_S is the ADC sampling frequency.

8.5.26.13 Register 00Eh (address = 00Eh), Decimation Filter Page

Figure 210. Register 00Eh

7	6	5	4	3	2	1	0
			DDC1 N	CO4 MSB			
			R/V	V-0h			

Table 110. Register 00Eh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DDC1 NCO4 MSB	R/W	0h	These bits are the MSB of the NCO frequency word for NCO4 of DDC1 (band 2, only when dual-band mode is enabled). The LSB represents $f_S / (2^{16})$, where f_S is the ADC sampling frequency.

8.5.26.14 Register 00Fh (address = 00Fh), Decimation Filter Page

Figure 211. Register 00Fh

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	NCO SEL PIN
W-0h	R/W-0h						

Table 111. Register 00Fh Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	NCO SEL PIN	R/W	0h	This bit enables NCO selection through the GPIO pins. 0 = NCO selection through SPI (see address 0h10) 1 = NCO selection through GPIO pins

8.5.26.15 Register 010h (address = 010h), Decimation Filter Page

Figure 212. Register 010h

7	6	5	4	3	2	1 0
0	0	0	0	0	0	NCO SEL
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h

Table 112. Register 010h Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	W	0h	Must write 0
1-0	NCO SEL	R/W	Oh	These bits enable NCO selection through register setting. 00 = NCO1 selected for DDC 1 01 = NCO2 selected for DDC 1 10 = NCO3 selected for DDC 1

8.5.26.16 Register 011h (address = 011h), Decimation Filter Page

7	6	5	4	3	2	1	0
0	0	0	0	0	0	LMFC RES	ET MODE
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W	-0h

Figure 213. Register 011h

0h W-0h W-0h W-0

Table 113. Register 011h Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	W	0h	Must write 0
1-0	LMFC RESET MODE	R/W	Oh	These bits reset the configuration for all DDCs and NCOs. 00 = All DDCs and NCOs are reset with every LMFC RESET 01 = Reset with first LMFC RESET after DDC start. Afterwards, reset only when analog clock dividers are resynchronized. 10 = Reset with first LMFC RESET after DDC start. Afterwards, whenever analog clock dividers are resynchronized, use two LMFC resets. 11 = Do not use an LMFC reset at all. Reset the DDCs only when a DDC start is asserted and afterwards continue normal operation. Deterministic latency is not ensured.

8.5.26.17 Register 014h (address = 014h), Decimation Filter Page

Figure 214. Register 014h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DDC0 6DB GAIN
W-0h	R/W-0h						

Table 114. Register 014h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	DDC0 6DB GAIN	R/W	Oh	This bit scales the output of DDC0 by 2 (6 dB) to compensate for real-to-complex conversion and image suppression. This scaling does not apply to the high-bandwidth filter path (divide- by-4 and -6); see register 1Fh. 0 = Normal operation 1 = 6-dB digital gain is added

8.5.26.18 Register 016h (address = 016h), Decimation Filter Page

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DDC1 6DB GAIN
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h
		Table	e 115. Regi	ster 016h I	Field Descript	ions	
Bit	Field		Туре	Reset	Description		
7-1	0		W	0h	Must write 0		
	°		••				

Figure 215. Register 016h

8.5.26.19 Register 01Eh (address = 01Eh), Decimation Filter Page

Figure 216. Register 01Eh

by-4 and -6); see register 1Fh. 0 = Normal operation1 = 6-dB digital gain is added

7	6	5	4	3	2	1	0
0		DDC DET LAT		0	0	0	0
W-0h		R/W-0h		W-0h	W-0h	W-0h	W-0h

Table 116. Register 01Eh Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	W	0h	Must write 0
6-4	DDC DET LAT	R/W	0h	These bits ensure deterministic latency depending on the decimation setting used; see Table 117.
3-0	0	W	0h	Must write 0

Table 117. DDC DET LAT Bit Settings

SETTING	COMPLEX DECIMATION SETTING
10h	Divide-by-24, -32 complex
20h	Divide-by-16, -18, -20 complex
40h	Divide-by-by 6, -12 complex
50h	Divide-by-4, -8, -9, -10 complex

8.5.26.20 Register 01Fh (address = 01Fh), Decimation Filter Page

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	WBF 6DB GAIN
W-0h	R/W-0h						

Figure 217. Register 01Fh

Table 118. Register 01Fh Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	WBF 6DB GAIN	R/W	0h	This bit scales the output of the wide bandwidth DDC filter by 2 (6 dB) to compensate for real-to-complex conversion and image suppression. This setting only applies to the high-bandwidth filter path (divide-by-4 and -6). 0 = Normal operation 1 = 6-dB digital gain is added

8.5.26.21 Register 033h-036h (address = 033h-036h), Decimation Filter Page

Figure 218. Register 033h

7	6	5	4	3	2	1	0
			CUSTOM PA	TTERN1[7:0]			
			R/W	/-0h			

Figure 219. Register 034h

7	6	5	4	3	2	1	0
			CUSTOM PA	TTERN1[15:8]			
			R/W	/-0h			

Figure 220. Register 035h

7	6	5	4	3	2	1	0
			CUSTOM PA	TTERN2[7:0]			
			R/V	V-0h			

Figure 221. Register 036h

7	6	5	4	3	2	1	0
			CUSTOM PA	TTERN2[15:8]			
			R/V	V-0h			

Table 119. Register 033h-036h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CUSTOM PATTERN	R/W	0h	These bits set the custom test pattern in address 33h, 34h, 35h, or 36h.

8.5.26.22 Register 037h (address = 037h), Decimation Filter Page

Figure 222. Register 037h

7	6	5	2	1	3	2	1	0
	TEST PATTERN D	DC1 Q-DAT	A			TEST PATTERN	I DDC1 I-DATA	
W-0h	W-0h	W-0h	W-	0h		R/W	-0h	
		Table 1	I20. Regi	ister 037	h Field Des	criptions		
Bit	Field		Туре	Reset	Description			
7-4	TEST PATTERN DDC1	Q-DATA	W	0h	These bits sr 0000 = Norm 0001 = Outp 0010 = Outp 0011 = Outp 0011 = Outp sequence of 0100 = Outp every clock of 0110 = Singl and 76h) 0111 Double pattern 1 and 1000 = Desk 1001 = SYN	elect the test patte nal operation using uts all 0s uts all 1s uts toggle pattern: 1010101010101010 ut digital ramp: out cycle from code 0 t e pattern: output da d custom pattern 2 ew pattern: output da	n for the Q strear ADC output data and 0101010101 put data increme o 65535 lata are a custom ta alternate betw data are FFFFh	n of the DDC1. an alternating 0101 nt by one LSB pattern 1 (75h reen custom
3-0	TEST PATTERN DDC1	I-DATA	R/W	0h	These bits set 0000 = Norm 0001 = Outp 0010 = Outp 0011 = Outp sequence of 0100 = Outp every clock of 0110 = Singl and 76h) 0111 Double pattern 1 and 1000 = Desk 1001 = SYN	elect the test patte hal operation using uts all 0s uts all 1s uts toggle pattern: 1010101010101010 ut digital ramp: out cycle from code 0 t e pattern: output da d custom pattern 2 ew pattern: output da	n for the I stream ADC output data output data are a and 0101010101 put data increme o 65535 lata are a custom ta alternate betw data are FFFFh	of the DDC1.

8.5.26.23 Register 038h (address = 038h), Decimation Filter Page

Figure 223. Register 038h

7	6	5	4	3	2	1	0	
	TEST PATTERN	DDC2 Q-DATA		TEST PATTERN DDC2 I -DATA				
	R/W	-0h			R/V	/-0h		

-	· · · · · · · · · · · · · · · · · · ·	-		
Bit	Field	Туре	Reset	Description
7-4	TEST PATTERN DDC2 Q-DATA	W	Oh	These bits select the test patten for the Q stream of the DDC2. 0000 = Normal operation using ADC output data 0001 = Outputs all 0s 0010 = Outputs all 1s 0011 = Outputs toggle pattern: output data are an alternating sequence of 1010101010101 and 01010101010101 0100 = Output digital ramp: output data increment by one LSB every clock cycle from code 0 to 65535 0110 = Single pattern: output data are a custom pattern 1 (75h and 76h) 0111 Double pattern: output data alternate between custom pattern 1 and custom pattern 2 1000 = Deskew pattern: output data are FFFh
3-0	TEST PATTERN DDC2 I -DATA	R/W	Oh	These bits select the test patten for the I stream of the DDC2. 0000 = Normal operation using ADC output data 0001 = Outputs all 0s 0010 = Outputs all 1s 0011 = Outputs toggle pattern: output data are an alternating sequence of 10101010101010 and 01010101010101 0100 = Output digital ramp: output data increment by one LSB every clock cycle from code 0 to 65535 0110 = Single pattern: output data are a custom pattern 1 (75h and 76h) 0111 Double pattern: output data alternate between custom pattern 1 and custom pattern 2 1000 = Deskew pattern: output data are FFFFh

Table 121. Register 038h Field Descriptions

8.5.26.24 Register 039h (address = 039h), Decimation Filter Page

Figure 224. Register 039h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	USE COMMON TEST PATTERN
W-0h	R/W-0h						

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	USE COMMON TEST PATTERN	R/W	0h	0 = Each data stream sends test patterns programmed by bits[3:0] of register 37h. 1 = Test patterns are individually programmed for the I and Q stream of each DDC using the TEST PATTERN DDCx y-DATA register bits (where x = 1 or 2 and y = I or Q).

TP RES EN

0

www.ti.com.cn

8.5.26.25 Register 03Ah (address = 03Ah), Decimation Filter Page

R/W

0h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	TEST PAT RES	TP RES EN
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h	R/W-0h
		Tabl	e 123. Reg	Field Descrip	otions		
Bit	Field		Туре	Reset	Description		
7-2	0		W	0h	Must write 0		
1	1 TEST PAT RES R/W			0h	Pulsing this bit re must be enabled 0 = Normal opera 1 = Reset the tes	sets the test pattern. The first (bit D0). ttion t pattern	e test pattern reset

This bit enables the test pattern reset. 0 = Reset disabled 1 = Reset enabled

Figure 225. Register 03Ah

8.5.27 Power Detector Page

8.5.27.1 Register 000h (address = 000h), Power Detector Page

	Figure 226. Register 000h								
7	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	PKDET EN		
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h		

Table 124. Register 000h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	PKDET EN	R/W	0h	This bit enables the peak power and crossing detector. 0 = Power detector disabled 1 = Power detector enabled

8.5.27.2 Register 001h-002h (address = 001h-002h), Power Detector Page

Figure 227. Register 001h

7	6	5	4	3	2	1	0
			BLKPKD)ET [7:0]			
R/W-0h							

Figure 228. Register 002h

7	6	5	4	3	2	1	0
			BLKPKD	ET [15:8]			
			R/V	V-0h			

Table 125. Register 001h-002h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	BLKPKDET	R/W	Oh	This register specifies the block length in terms of number of samples (S') used for peak power computation. Each sample S' is a peak of 8 actual ADC samples. This parameter is a 17-bit value directly in linear scale. In decimation mode, the block length must be a multiple of a divide-by-4 or -6 complex: length = $5 \times$ decimation factor. The divide-by-8 to -32 complex: length = $10 \times$ decimation factor.

8.5.27.3 Register 003h (address = 003h), Power Detector Page

7	6	5	4	3	2	1	0				
0	0	0	0	0	0	0	BLKPKDET[16]				
W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	W-0h	R/W-0h				
	Table 126. Register 003h Field Descriptions										
Bit	Field		Туре	Reset I	Description						
7-1	0		W	0h I	Must write 0						
0	BLKPKDET[16]		R/W	Oh si	This register specifies the block length in terms of number of samples (S [°]) used for peak power computation. Each sample S [°] is a peak of 8 actual ADC samples. This parameter is a 17-bit value directly in linear scale. In decimation mode, the block						

Figure 229. Register 003h

8.5.27.4 Register 007h-00Ah (address = 007h-00Ah), Power Detector Page

Figure 230. Register 007h

 $= 5 \times$ decimation factor.

7	6	5	4	3	2	1	0	
BLKTHHH								
R/W-0h								

Figure 231. Register 008h

7	6	5	4	3	2	1	0	
BLKTHHL								
R/W-0h								

Figure 232. Register 009h

7	6	5	4	3	2	1	0
BLKTHLH							
R/W-0h							

Figure 233. Register 00Ah

7	6	5	4	3	2	1	0	
BLKTHLL								
R/W-0h								

Table 127. Register 007h-00Ah Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	BLKTHHH BLKTHHL BLKTHLH BLKTHLL	R/W	0h	These registers set the four different thresholds for the hysteresis function threshold values from 0 to 256 (2TH), where 256 is equivalent to the peak amplitude. Example: BLKTHHH is set to -2 dBFS from peak: $10^{(-2/20) \times 256}$ = 203, then set 5407h, 5C07h = CBh.

length must be a multiple of a divide-by-4 or -6 complex: length

The divide-by-8 to -32 complex: length = $10 \times$ decimation factor.

www.ti.com.cn

8.5.27.5 Register 00Bh-00Ch (address = 00Bh-00Ch), Power Detector Page

Figure 234. Register 00Bh

7	6	5	4	3	2	1	0	
DWELL[7:0]								
R/W-0h								

Figure 235. Register 00Ch

_								
7	6	5	4	3	2	1	0	
DWELL[15:8]								
R/W-0h								

Table 128. Register 00Bh-00Ch Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DWELL	R/W	Oh	DWELL time counter. When the computed block peak crosses the upper thresholds BLKTHHH or BLKTHLH, the peak detector output flags are set. In order to be reset, the computed block peak must remain continuously lower than the lower threshold (BLKTHHL or BLKTHLL) for the period specified by the DWELL value. This threshold is 16 bits, is specified in terms of f_S / 8 clock cycles, and must be set to 0 for the crossing detector. Example: if f_S = 3 GSPS, f_S / 8 = 375 MHz, and DWELL = 0100h then the DWELL time = 2^9 / 375 MHz = 1.36 μ s.

8.5.27.6 Register 00Dh (address = 00Dh), Power Detector Page

Figure 236. Register 00Dh

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	FILT0LPSEL
W-0h	R/W-0h						

Table 129. Register 00Dh Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	FILTOLPSEL	R/W	Oh	This bit selects either the block detector output or 2-bit output as the input to the IIR filter. 0 = Use the output of the high comparators (HH and HL) as the input of the IIR filter 1 = Combine the output of the high (HH and HL) and low (LH and LL) comparators to generate a 3-level input to the IIR filter (-1, 0, 1)

8.5.27.7 Register 00Eh (address = 00Eh), Power Detector Page

7	6	5	4	Ļ	3	2	1	0		
0	0	0	0)	TIMECONST					
W-0h	W-0h	W-0h	W-	0h	R/W-0h					
Table 130. Register 00Eh Field Descriptions										
Bit	Field	-	Type	Reset	Description					

Figure 237. Register 00Eh

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3-0	TIMECONST	R/W	0h	These bits set the crossing detector time period for N = 0 to 15 as $2^{N} \times f_{S} / 8$ clock cycles. The maximum time period is 32768 × $f_{S} / 8$ clock cycles (approximately 87 µs at 3 GSPS).

8.5.27.8 Register 00Fh, 010h-012h, and 016h-019h (address = 00Fh, 010h-012h, and 016h-019h), Power Detector Page

Figure 238. Register 00Fh 7 6 5 4 3 2 1 FILOTHH[7:0] R/W-0h

Figure 239. Register 010h

7	6	5	4	3	2	1	0
FIL0THH[15:8]							
R/W-0h							

Figure 240. Register 011h

7	6	5	4	3	2	1	0
FIL0THL[7:0]							
R/W-0h							

Figure 241. Register 012h

7	6	5	4	3	2	1	0
FIL0THL[15:8]							
R/W-0h							

Figure 242. Register 016h

7	6	5	4	3	2	1	0	
FIL1THH[7:0]								
R/W-0h								

Figure 243. Register 017h

7	6	5	4	3	2	1	0	
	FIL1THH[15:8]							
R/W-0h								

www.ti.com.cn

0

Figure 244. Register 018h									
7	6	5	4	3	2	1	0		
	FIL1THL[7:0]								
R/W-0h									

Figure 245. Register 019h

7	6	5	4	3	2	1	0	
	FIL1THL[15:8]							
R/W-0h								

Table 131. Register 00Fh, 010h, 011h, 012h, 016h, 017h, 018h, and 019h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	FILOTHH FILOTHL FIL1THH FIL1THL	R/W	Oh	Comparison thresholds for the crossing detector counter. This threshold is 16 bits in 2.14 signed notation. A value of 1 (4000h) corresponds to 100% crossings, a value of 0.125 (0800h) corresponds to 12.5% crossings.

8.5.27.9 Register 013h-01Ah (address = 013h-01Ah), Power Detector Page

Figure 246. Register 013h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	IIR0 2BIT EN
W-0h	R/W-0h						

Figure 247. Register 01Ah

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	IIR1 2BIT EN
W-0h	R/W-0h						

Table 132. Register 013h and 01Ah Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	IIR0 2BIT EN IIR1 2BIT EN	R/W	Oh	This bit enables 2-bit output format of the IIR0 and IIR1 output comparators. 0 = Selects 1-bit output format 1 = Selects 2-bit output format

Texas Instruments

www.ti.com.cn

8.5.27.10 Register 01Dh-01Eh (address = 01Dh-01Eh), Power Detector Page

Figure 248. Register 01Dh

7	6	5	4	3	2	1	0	
DWELLIIR[7:0]								
R/W-0h								

Figure 249. Register 01Eh

7	6	5	4	3	2	1	0	
DWELLIIR[15:8]								
R/W-0h								

Table 133. Register 01Dh-01Eh Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DWELLIIR	R/W	Oh	DWELL time counter for the IIR output comparators. When the IIR filter output crosses the upper thresholds FIL0THH or FIL1THH, the IIR peak detector output flags are set. In order to be reset, the output of the IIR filter must remain continuously lower than the lower threshold (FIL0THL or FIL1THL) for the period specified by the DWELLIIR value. This threshold is 16 bits and is specified in terms of $f_S / 8$ clock cycles. Example: if $f_S = 3$ GSPS, $f_S / 8 = 375$ MHz, and DWELLIIR = 0100h, then the DWELL time = 29 / 375 MHz = 1.36 µs.

8.5.27.11 Register 020h (address = 020h), Power Detector Page

Figure 250. Register 020h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	RMSDET EN
W-0h	R/W-0h						

Table 134. Register 020h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	RMSDET EN	R/W	0h	This bit enables the RMS power detector. 0 = Power detector disabled 1 = Power detector enabled

8.5.27.12 Register 021h (address = 021h), Power Detector Page

Figure 251. Register 021h

7	6	5	2	1	3	2	1	0
0	0	0	PWRDETACCU					
W-0h	W-0h	W-0h	R/W-0h					
Table 135. Register 021h Field Descriptions								

BIt	Field	туре	Reset	Description
7-5	0	W	0h	Must write 0
4-0	PWRDETACCU	R/W	0h	These bits program the block length to be used for RMS power computation. The block length is defined in terms of $f_S / 8$ clocks and can be programmed as 2M, where M = 0 to 16.

8.5.27.13 Register 022h-025h (address = 022h-025h), Power Detector Page

7	6	5	4	3	2	1	0	
PWRDETH[7:0]								
R/W-0h								

Figure 252. Register 022h

Figure 253. Register 023h

7	6	5	4	3	2	1	0
PWRDETH[15:8]							
R/W-0h							

Figure 254. Register 024h

7	6	5	4	3	2	1	0
PWRDETL[7:0]							
R/W-0h							

Figure 255. Register 025h

7	6	5	4	3	2	1	0	
PWRDETL[15:8]								
R/W-0h								

Table 136. Register 022h-025h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PWRDETH[15:0] PWRDETL[15:0]	R/W	0h	The computed average power is compared against these high and low thresholds. One LSB of the thresholds represents $1 / 2^{16}$. Example: if PWRDETH is set to -14 dBFS from peak, $(10^{(-14 / 20)})^2 \times 2^{16} = 2609$, then set 5422h, 5423h, 5C22h, 5C23h = 0A31h.

8.5.27.14 Register 027h (address = 027h), Power Detector Page

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	RMS 2BIT EN
W-0h	R/W-0h						

Table 137. Register 027h Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	W	0h	Must write 0
0	RMS 2BIT EN	R/W	Oh	This bit enables 2-bit output format on the RMS output comparators. 0 = Selects 1-bit output format 1 = Selects 2-bit output format

8.5.27.15 Register 02Bh (address = 02Bh), Power Detector Page

Figure 257. Register 02Bh

7	6	5	4	3	2	1	0
0	0	0	RESET AGC	0	0	0	0
W-0h	W-0h	W-0h	R/W-0h	W-0h	W-0h	W-0h	W-0h

Table 138. Register 02Bh Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	W	0h	Must write 0
4	RESET AGC	R/W	0h	After configuration, the AGC module must be reset and then brought out of reset to start operation. 0 = Clear AGC reset 1 = Set AGC reset Example: set 542Bh to 10h and then to 00h.
3-0	0	W	0h	Must write 0

8.5.27.16 Register 032h-035h (address = 032h-035h), Power Detector Page

Figure 258. Register 032h

7	6	5	4	3	2	1	0
			OUTSEI	L GPIO4			
			R/W	/-0h			

Figure 259. Register 033h

7	6	5	4	3	2	1	0
			OUTSEL	GPIO1			
			R/W	/-0h			

Figure 260. Register 034h

7	6	5	4	3	2	1	0
			OUTSEL	L GPIO3			
			R/W	/-0h			

Figure 261. Register 035h

7	6	5	4	3	2	1	0
			OUTSEL	. GPIO2			
			R/W	′-0h			

Table 139. Register 032h-035h Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUTSEL GPIO1 OUTSEL GPIO2 OUTSEL GPIO3 OUTSEL GPIO4	R/W	Oh	These bits set the function or signal for each GPIO pin. 0 = IIR PK DET0[0] of channel A 1 = IIR PK DET0[1] of channel A (2-bit mode) 2 = IIR PK DET1[0] of channel A 3 = IIR PK DET1[1] of channel A 4 = BLKPKDETH of channel A 5 = BLKPKDETL of channel A 6 = PWR Det[0] of channel A 7 = PWR Det[1] of channel A 8 = FOVR of channel A 9-17 = Repeat outputs 0-8 but for channel B instead

8.5.27.17 Register 037h (address = 037h), Power Detector Page

Figure 262. Register 037h

7	6	5	4	3	2	1	0
0	0	0	0	IODIR GPIO2	IODIR GPIO3	IODIR GPIO1	IODIR GPIO4
W-0h	W-0h	W-0h	W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
		T -11-44	0				

Table 140. Register 037h Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	W	0h	Must write 0
3-0	IODIRGPIO[4:1]	R/W	0h	These bits select the output direction for the GPIO[4:1] pins. 0 = Input (for the NCO control) 1 = Output (for the AGC alarm function)

8.5.27.18 Register 038h (address = 038h), Power Detector Page

Figure 263. Register 038h

7	6	5	4	3	2	1	0
0	0	INS	EL1	0	0	INS	EL0
W-0h	W-0h	R/W	/-0h	R/W-0h	R/W-0h	R/V	V-0h

Table 141. Register 038h Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	0	W	0h	Must write 0
5-4	INSEL1	R/W	Oh	These bits select which GPIO pin is used for the INSEL1 bit. 00 = GPIO4 01 = GPIO1 10 = GPIO3 11 = GPIO2 Table 142 lists the NCO selection, based on the bit settings of the INSEL pins; see the section for details.
3-2	0	W	0h	Must write 0
1-0	INSELO	R/W	Oh	These bits select which GPIO pin is used for the INSEL0 bit. 00 = GPIO4 01 = GPIO1 10 = GPIO3 11 = GPIO2 Table 142 lists the NCO selection, based on the bit settings of the INSEL pins; see the section for details.

Table 142. INSEL Bit Settings

INSEL1	INSEL2	NCO SELECTED
0	0	NCO1
0	1	NCO2
1	0	NCO3
1	1	n/a

www.ti.com.cn

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Start-Up Sequence

The steps in 表 143 are recommended as the power-up sequence when the ADC32RF82 is in the decimation-by-4 complex output mode.

STEP	DESCRIPTION	PAGE, REGISTER ADDRESS AND DATA	COMMENT
1	Supply all supply voltages. Refer the power supply sequencing mentioned in the Power Supply Recommendations section.		_
2	Provide the SYSREF signal.	—	—
3	Pulse a hardware reset (low-to-high-to-low) on pins 33 and 34.	_	-
4	Write the register addresses described in the <i>PowerUpConfig</i> file.	See the files located in SBAA226	The <i>Power-up config</i> file contains analog trim registers that are required for best performance of the ADC. Write these registers every time after power up.
5	Write the register addresses mentioned in the ILConfigNyqX_ChA file, where X is the Nyquist zone.	See the files located in SBAA226	Based on the signal band of interest, provide the Nyquist zone information to the device.
6	Write the register addresses mentioned in the ILConfigNyqX_ChB file, where X is the Nyquist zone.	See the files located in SBAA226	This step optimizes device' performance by reducing interleaving mismatch errors.
6.1	Wait for 50 ms for the device to estimate the interleaving errors.	—	_
7	Depending upon the Nyquist band of operation, choose and write the registers from the appropriate file, <i>NLConfigNyqX_ChA</i> , where X is the Nyquist zone.	See the files located in SBAA226	Third-order nonlinearity of the device is optimized by this step for channel A.
7.1	Depending upon the Nyquist band of operation, choose and write the registers from the appropriate file, <i>NLConfigNyqX_ChB</i> , where X is the Nyquist zone.	See the files located in SBAA226	Third-order nonlinearity of the device is optimized by this step for channel B.
8	Configure the JESD interface and DDC block by writing the registers mentioned in the <i>DDC</i> <i>Config</i> file.	See the files located in SBAA226	Determine the DDC and JESD interface LMFS options. Program these options in this step.

表 143. Initialization Sequence

Texas Instruments

ADC32RF82

ZHCSGR4-SEPTEMBER 2017

www.ti.com.cn

9.1.2 Hardware Reset

图 264 and 表 144 show the timing information for the hardware reset.

图 264. Hardware Reset Timing Diagram

表 144. Hardware Reset Timing Information

		MIN	TYP	MAX	UNIT
t ₁	Power-on delay from power-up to active high RESET pulse	1			ms
t ₂	Reset pulse duration: active high RESET pulse duration	1			μs
t ₃	Register write delay from RESET disable to SEN active	100			ns

9.1.3 SNR and Clock Jitter

The signal-to-noise ratio (SNR) of the ADC is limited by three different factors, as shown in 公式 5: quantization noise, thermal noise, and jitter. The quantization noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit ADC. The thermal noise limits the SNR at low input frequencies and the clock jitter sets the SNR for higher input frequencies.

$$SNRADC[dBc] = -20\log_{10} \left(10^{\frac{SNR_{Quantization Noise}}{20}}\right)^{2} + \left(10^{\frac{SNR_{Thermal Noise}}{20}}\right)^{2} + \left(10^{\frac{SNR_{Jitter}}{20}}\right)^{2}$$
(5)

公式 6 calculates the SNR limitation resulting from sample clock jitter:

$$SNR_{Jitter} \left[dBc \right] = -20 \log \left(2\pi \times f_{IN} \times t_{Jitter} \right)$$
(6)

The total clock jitter (T_{Jitter}) has two components: the internal aperture jitter (90 f_{S}) is set by the noise of the clock input buffer and the external clock jitter. $\Delta \pm 7$ calculates T_{Jitter} :

$$t_{\text{Jitter}} = \sqrt{\left(t_{\text{Jitter}}, \text{Ext}_{\text{Clock}_{\text{Input}}}\right)^{2} + \left(t_{\text{Aperture}_{\text{ADC}}}\right)^{2}}$$
(7)

External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.

The ADC32RF82 has a thermal noise of approximately 63 dBFS and an internal aperture jitter of 90 f_S . The SNR, is shown in 265, depending on the amount of external jitter for different input frequencies.

图 265. ADC SNR vs Input Frequency and External Clock Jitter

9.1.3.1 External Clock Phase Noise Consideration

External clock jitter can be calculated as shown in \mathbb{Z} 266 by integrating the phase noise of the clock source out to approximately two times of the ADC sampling rate (2 × f_S). In order to maximize the ADC SNR, an external band-pass filter is recommended to be used on the clock input. This filter reduces the jitter contribution from the broadband clock phase noise floor by effectively reducing the integration bandwidth to the pass band of the band-pass filter. This method is suitable when estimating the overall ADC SNR resulting from clock jitter at a certain input frequency.

图 266. Integration Bandwidth for Extracting Jitter from Clock Phase Noise

However, when estimating the affect of a nearby blocker (such as a strong in-band interferer to the sensitivity, the phase noise information shown in 267 can be used directly to estimate the noise budget contribution at a certain offset frequency.

图 267. Small Wanted Signal in Presence of Interferer

At the sampling instant, the phase noise profile of the clock source convolves with the input signal (for example, the small wanted signal and the strong interferer merge together). If the power of the clock phase noise in the signal band of interest is too large, the wanted signal cannot not be recovered.

The resulting equivalent phase noise at the ADC input is also dependent on the sampling rate of the ADC and frequency of the input signal. 公式 8 shows the ADC sampling rate scales the clock phase noise.

$$ADC_{NSD} (dBc / Hz) = PN_{CLK} (dBc / Hz) - 20 \times log \left(\frac{f_{S}}{f_{IN}}\right)$$
(8)

Using this information, the noise contribution resulting from the phase noise profile of the ADC sampling clock can be calculated.

1

9.1.4 Power Consumption in Different Modes

The ADC32RF82 consumes approximately 6 W of power when both channels are active with a divide-by-4 complex output. When different DDC options are used, the power consumption on the DVDD supply changes by a small amount but remains unaffected on other supplies. In the applications requiring just one channel to be active, channel A must be chosen as the active channel and channel B can be powered down. Power consumption reduces to approximately 4 W in single-channel operation with a divide-by-3.4 option at a 2457.6-MSPS device clock rate.

表 145, 表 146, and 表 147 show power consumption in different DDC modes for dual-channel and single-channel operation.

DECIMATION OPTION	ACTIVE CHANNEL	ACTIVE DDC	AVDD1P9 (mA)	AVDD1P2 (mA)	DVDD1P2 (mA)	TOTAL POWER (mW)
Divide-by-4	Channels A, B	Single	1729	850	1500	5988
Divide-by-8	Channels A, B	Dual	1729	853	1640	6152
Divide-by-8	Channels A, B	Single	1729	851	1445	5926
Divide-by-16	Channels A, B	Dual	1729	858	1645	6164
Divide-by-16	Channels A, B	Single	1729	856	1440	5926
Divide-by-24	Channels A, B	Dual	1724	856	1624	6128
Divide-by-24	Channels A, B	Single	1725	854	1380	5847
Divide-by-32	Channels A, B	Dual	1723	855	1528	6014
Divide-by-32	Channels A, B	Single	1723	853	1315	5767
Divide-by-4	Channel A	Single	935	501	910	3399
Divide-by-8	Channel A	Dual	935	499	996	3496
Divide-by-8	Channel A	Single	935	490	890	3364
Divide-by-16	Channel A	Dual	935	499	1005	3506
Divide-by-16	Channel A	Single	935	490	887	3360
Divide-by-24	Channel A	Dual	933	499	988	3483
Divide-by-24	Channel A	Single	933	490	867	3333
Divide-by-32	Channel A	Dual	932	499	945	3431
Divide-by-32	Channel A	Single	932	490	833	3292

表 145. Power Consumption in Different DDC Modes (Sampling Clock Frequency, fs = 2457.6 MSPS)

TEXAS INSTRUMENTS

www.ti.com.cn

表 146. Power Consumption in Different DDC Modes (Sampling Clock Frequency, fs = 1966.08 MSPS)

DECIMATION OPTION	ACTIVE CHANNEL	ACTIVE DDC	AVDD1P9 (mA)	AVDD1P2 (mA)	DVDD1P2 (mA)	TOTAL POWER (mW)
Divide-by-4	Channels A, B	Single	1644	827	1332	5606
Divide-by-8	Channels A, B	Dual	1643	833	1449	5746
Divide-by-8	Channels A, B	Single	1643	825	1252	5510
Divide-by-16	Channels A, B	Dual	1643	836	1462	5764
Divide-by-16	Channels A, B	Single	1643	832	1286	5557
Divide-by-24	Channels A, B	Dual	1639	835	1427	5715
Divide-by-24	Channels A, B	Single	1639	830	1237	5491
Divide-by-32	Channels A, B	Dual	1638	826	1331	5593
Divide-by-32	Channels A, B	Single	1638	824	1174	5410
Divide-by-4	Channel A	Single	904	469	828	3209
Divide-by-8	Channel A	Dual	905	470	891	3285
Divide-by-8	Channel A	Single	905	461	805	3175
Divide-by-16	Channel A	Dual	904	470	904	3298
Divide-by-16	Channel A	Single	904	461	808	3177
Divide-by-24	Channel A	Dual	903	470	875	3262
Divide-by-24	Channel A	Single	903	470	768	3129
Divide-by-32	Channel A	Dual	902	470	838	3218
Divide-by-32	Channel A	Single	902	461	750	3106

表 147. Power Consumption in Different DDC Modes (Sampling Clock Frequency, f_s = 2211.84 MSPS)

DECIMATION OPTION	ACTIVE CHANNEL	ACTIVE DDC	AVDD1P9 (mA)	AVDD1P2 (mA)	DVDD1P2 (mA)	TOTAL POWER (mW)
Divide-by-4	Channels A, B	Single	1666	884	1450	5850
Divide-by-8	Channels A, B	Dual	1666	884	1550	5965
Divide-by-8	Channels A, B	Single	1666	881	1380	5766
Divide-by-16	Channels A, B	Dual	1664	882	1528	5933
Divide-by-16	Channels A, B	Single	1664	879	1346	5720
Divide-by-24	Channels A, B	Dual	1665	875	1508	5904
Divide-by-24	Channels A, B	Single	1665	865	1298	5651
Divide-by-32	Channels A, B	Dual	1664	873	1413	5791
Divide-by-32	Channels A, B	Single	1664	864	1247	5589
Divide-by-4	Channel A	Single	919	470	987	3422
Divide-by-8	Channel A	Dual	918	469	945	3370
Divide-by-8	Channel A	Single	918	461	859	3262
Divide-by-16	Channel A	Dual	918	469	957	3384
Divide-by-16	Channel A	Single	918	461	855	3258
Divide-by-24	Channel A	Dual	917	469	950	3374
Divide-by-24	Channel A	Single	904	461	846	3221
Divide-by-32	Channel A	Dual	916	469	899	3314
Divide-by-32	Channel A	Single	903	461	801	3167

9.1.5 Using DC Coupling in the ADC32RF82

The ADC32RF82 can be used in dc-coupling applications. However, the following points must be considered when designing the system:

1. Ensure that the correct common-mode voltage is used at the ADC analog inputs.

The analog inputs are internally self-biased to V_{CM} through approximately a 33- Ω resistor. The internal biasing resistors also function as a termination resistor. However, if a different termination is required, the external resistor R_{TERM} can be differentially placed between the analog inputs, as shown in \mathbb{E} 268. The amplifier V_{OCM} pin is recommended to be driven from the CM pin of the ADC to help the amplifier output common-mode voltage track the required common-mode voltage of the ADC.

Copyright © 2016, Texas Instruments Incorporated

- (1) Set the INCR CM IMPEDANCE bit to increase the RCM from 0 Ω to > 5000 Ω .
- (2) R_{DC} is approximately 65 Ω .

图 268. The ADC32RF82 in a DC-Coupling Application

2. Ensure that the correct SPI settings are written to the ADC.

As shown in 🛿 269, the ADC32RF82 has a digital block that estimates and corrects the offset mismatch among four interleaving ADC cores for a given channel.

图 269. Offset Corrector in the ADC32RF82

The offset corrector block nullifies dc, $f_S / 8$, $f_S / 4$, $3 f_S / 8$, and $f_S / 2$. The resulting spectrum becomes free from static spurs at these frequencies. The corrector continuously processes the data coming from the interleaving ADC cores and cannot distinguish if the tone at these frequencies is part of signal or if the tone originated from a mismatch among the interleaving ADC cores. Thus, in applications where the signal is present at these frequencies, the offset corrector block can be bypassed.

9.1.5.1 Bypassing the Offset Corrector Block

When the offset corrector is bypassed, offset mismatch among interleaving ADC cores appears in the ADC output spectrum. To correct the effects of mismatch, place the ADC in an idle channel state (no signal at the ADC inputs) and the corrector must be allowed to run for some time to estimate the mismatch, then the corrector is frozen so that the last estimated value is held. Required register writes are provided in $\frac{1}{5}$ 148.

STEP	REGISTER WRITE COMMENT					
STEPS FOR	FREEZING THE CORRECTOR BLO	СК				
1	_	Signal source is turned off. The device detects an idle channel at its input.				
2	_	Wait for at least 0.4 ms for the corrector to estimate the internal offset				
	Address 4001h, value 00h					
	Address 4002h, value 00h	Solart Offert Carr Dage Channel A				
	Address 4003h, value 00h					
3	Address 4004h, value 61h					
	Address 6068h, value C2h	Freeze the corrector for channel A				
	Address 4003h, value 01h	Select Offset Corr Page Channel B				
	Address 6068h, value C2h	Freeze the corrector for channel B				
4	_	Signal source can now be turned on				
STEPS FOR	BYPASSING THE CORRECTOR BL	.OCK				
	Address 4001h, value 00h					
	Address 4002h, value 00h	_				
	Address 4003h, value 00h					
1	Address 4004h, value 61h	Select Offset Corr Page Channel A				
	Address 6068h, value 46h	Disable the corrector for channel A				
	Address 4003h, value 01h	Select Offset Corr Page Channel B				
	Address 6068h, value 46h	Disable the corrector for channel B				

表 148. Freezing and Bypassing the Offset Corrector Block

9.1.5.1.1 Effect of Temperature

270 and 271 show the behavior of $nf_S / 8$ tones with respect to temperature when the offset corrector block is frozen or disabled.

9.2 Typical Application

The ADC32RF82 is designed for wideband receiver applications demanding high dynamic range over a large input frequency range. A typical schematic for an ac-coupled receiver is shown in 图 272.

Decoupling capacitors with low ESL are recommended to be placed as close as possible at the pins indicated in 272. Additional capacitors can be placed on the remaining power pins.

Copyright © 2016, Texas Instruments Incorporated

图 272. Typical Application Implementation Diagram

Typical Application (接下页)

9.2.1 Design Requirements

9.2.1.1 Transformer-Coupled Circuits

Typical applications involving transformer-coupled circuits are discussed in this section. To ensure good amplitude and phase balance at the analog inputs, transformers (such as TC1-1-13 and TC1-1-43) can be used from the dc to 1000-MHz range and from the 1000-MHz to 4-GHz range of input frequencies, respectively. When designing the driving circuits, the ADC input impedance (or SDD11) must be considered.

By using the simple drive circuit of 🛿 273, uniform performance can be obtained over a wide frequency range. The buffers present at the analog inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.

Copyright © 2016, Texas Instruments Incorporated

图 273. Input Drive Circuit

9.2.2 Detailed Design Procedure

For optimum performance, the analog inputs must be driven differentially. This architecture improves commonmode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input pin is recommended to damp out ringing caused by package parasitics, as shown in \mathbb{R} 273.

9.2.3 Application Curves

图 274 and 图 275 show the typical performance at 100 MHz and 1850 MHz, respectively.

10 Power Supply Recommendations

The DVDD power supply (1.15 V) must be stable before ramping up the AVDD19 supply (1.9 V), as shown in 276. The AVDD supply (1.15 V) can come up in any order during the power sequence. The power supplies can ramp up at any rate and a time delay of greater than 10 milliseconds should be given between DVDD1P15 (1.15 V) being stable to AVDD1P9 (1.9 V) ramping up.

图 276. Power Sequencing for the ADC32RF82

11 Layout

11.1 Layout Guidelines

The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in 🛿 277. The *ADC32RF45/RF80 EVM Quick Startup Guide* provides a complete layout of the EVM. Some important points to remember during board layout are:

- Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as shown in the reference layout of 🛿 277 as much as possible.
- In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling. This configuration is also maintained on the reference layout of 8 277 as much as possible.
- Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output
 traces must not be kept parallel to the analog input traces because this configuration can result in coupling
 from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver
 [such as field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs)] must be
 matched in length to avoid skew among outputs.
- At each power-supply pin (AVDD, DVDD, or AVDD19), keep a 0.1-μF decoupling capacitor close to the device. A separate decoupling capacitor group consisting of a parallel combination of 10-μF, 1-μF, and 0.1-μF capacitors can be kept close to the supply source.

11.2 Layout Example

图 277. ADC32RF82EVM Layout

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档:

- 《ADC32RF45/RF80 EVM 快速启动指南》
- 《ADC32RF45 的配置文件》

12.2 接收文档更新通知

要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **7I 参考设计支持** 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更, 恕不另行通知 和修订此文档。如欲获取此产品说明书的浏览器版本, 请参阅左侧的导航。

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
ADC32RF82IRMPR	Active	Production	VQFN (RMP) 72	1500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32RF82
ADC32RF82IRMPR.A	Active	Production	VQFN (RMP) 72	1500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32RF82
ADC32RF82IRMPT	Active	Production	VQFN (RMP) 72	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32RF82
ADC32RF82IRMPT.A	Active	Production	VQFN (RMP) 72	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32RF82

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADC32RF82IRMPR	VQFN	RMP	72	1500	330.0	24.4	10.25	10.25	2.25	16.0	24.0	Q2
ADC32RF82IRMPT	VQFN	RMP	72	250	180.0	24.4	10.25	10.25	2.25	16.0	24.0	Q2

www.ti.com

PACKAGE MATERIALS INFORMATION

27-Dec-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADC32RF82IRMPR	VQFN	RMP	72	1500	350.0	350.0	43.0
ADC32RF82IRMPT	VQFN	RMP	72	250	213.0	191.0	55.0

RMP0072A

PACKAGE OUTLINE

VQFN - 0.9 mm max height

VQFN

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RMP0072A

EXAMPLE BOARD LAYOUT

VQFN - 0.9 mm max height

VQFN

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

RMP0072A

EXAMPLE STENCIL DESIGN

VQFN - 0.9 mm max height

VQFN

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司